These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3501909)

  • 1. Nuclear changes and morphology of the epidermis in the hibernating frog.
    Barni S; Bernocchi G; Gerzeli G
    Tissue Cell; 1987; 19(6):817-25. PubMed ID: 3501909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochemical variations in Purkinje neuron nuclei of cerebellar areas with different afferent systems in Rana esculenta. Comparison between activity and hibernation.
    Bernocchi G
    J Hirnforsch; 1985; 26(6):659-65. PubMed ID: 3879258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin organization in frog Purkinje neurons during the annual cycle: cytochemical and ultrastructural studies.
    Barni S; Bernocchi G; Biggiogera M
    Basic Appl Histochem; 1983; 27(2):129-40. PubMed ID: 6604520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of prolactin receptor in frog (Rana ridibunda) dorsal skin during hibernation.
    Sengezer-Inceli M; Murathanoglu O; Castillo SS; Sancar-Bas S; Kaptan E
    Acta Biol Hung; 2011 Dec; 62(4):349-60. PubMed ID: 22119865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell proliferation and death in the brain of active and hibernating frogs.
    Cerri S; Bottiroli G; Bottone MG; Barni S; Bernocchi G
    J Anat; 2009 Aug; 215(2):124-31. PubMed ID: 19531087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in nuclear volume of Purkinje cells in the cerebellum of the water frog (Rana Esculenta L.) in the annual cycle.
    Dziubek K; Lach H; Krawczyk S
    Acta Morphol Acad Sci Hung; 1980; 28(1-2):3-9. PubMed ID: 7004100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hibernation on sodium and chloride ion transport in isolated frog skin.
    Kosik-Bogacka DI; Tyrakowski T
    Folia Biol (Krakow); 2007; 55(1-2):47-51. PubMed ID: 17687934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of K(+)-p-nitrophenyl phosphatase activity in the urinary bladder of the frog Rana esculenta during hibernation and active life.
    De Piceis Polver P; Fenoglio C; Barni S; Gerzeli G
    Eur J Histochem; 1999; 43(1):55-62. PubMed ID: 10340144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of the skin barrier structures revealed by electron microscopy.
    Ishida-Yamamoto A; Igawa S; Kishibe M
    Exp Dermatol; 2018 Aug; 27(8):841-846. PubMed ID: 29704884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Differentiation of human epidermis cultured in vitro].
    Rufat Perez MJ; Ramirez Bosca A; Castells Rodellas A
    Med Cutan Ibero Lat Am; 1989; 17(4):249-54. PubMed ID: 2693863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The annual cycle of Erinaceus europaeus L. as a model for a further study of cytochemical heterogeneity in Purkinje neuron nuclei.
    Bernocchi G; Barni S; Scherini E
    Neuroscience; 1986 Feb; 17(2):427-37. PubMed ID: 2422587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultrastructural and cytochemical study of the mesonephros of Rana esculenta during activity and hibernation.
    Fenoglio C; Vaccarone R; Chiari P; Gervaso MV
    Eur J Morphol; 1996; 34(2):107-21. PubMed ID: 9090990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internalization of erythrocytes into liver parenchymal cells in naturally hibernating frogs (Rana esculenta L.).
    Barni S; Bernocchi G
    J Exp Zool; 1991 May; 258(2):143-50. PubMed ID: 2022945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunocytochemical changes of cytoskeleton components and calmodulin in the frog cerebellum and optic tectum during hibernation.
    Pisu MB; Scherini E; Bernocchi G
    J Chem Neuroanat; 1998 Aug; 15(2):63-73. PubMed ID: 9719360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of the skin in three-dimensional collagen gel matrix culture.
    Sugihara H; Toda S; Miyabara S; Kusaba Y; Minami Y
    In Vitro Cell Dev Biol; 1991 Feb; 27A(2):142-6. PubMed ID: 2019554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Premitotic DNA synthesis in the brain of the adult frog (Rana esculenta L.): an autoradiographic 3H-thymidine study.
    Bernocchi G; Scherini E; Giacometti S; Mares V
    Anat Rec; 1990 Dec; 228(4):461-70. PubMed ID: 2285163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frog hepatocyte modifications induced by seasonal variations: a morphological and cytochemical study.
    Fenoglio C; Bernocchi G; Barni S
    Tissue Cell; 1992; 24(1):17-29. PubMed ID: 1561623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light and electron microscope observations on auto- and heterophagy in the exocrine pancreas of the hibernating frog (Rana esculenta).
    Geuze JJ
    J Ultrastruct Res; 1970 Sep; 32(5):391-404. PubMed ID: 4920744
    [No Abstract]   [Full Text] [Related]  

  • 19. Expression of natriuretic peptides, nitric oxide synthase, and guanylate cyclase activity in frog mesonephros during the annual cycle.
    Fenoglio C; Visai L; Addario C; Gerzeli G; Milanesi G; Vaccarone R; Barni S
    Gen Comp Endocrinol; 2004 Jun; 137(2):166-76. PubMed ID: 15158128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochemical evidence for potassium-dependent p-nitrophenylphosphatase activity in pavement cells of Rana esculenta mesentery.
    Fenoglio C; De Piceis Polver P; Bernini F; Barni S
    Anat Rec; 1998 Jan; 250(1):1-5. PubMed ID: 9458062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.