These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. 3D-Printed Collagen-Nanocellulose Hybrid Bioscaffolds with Tailored Properties for Tissue Engineering Applications. Dobaj Štiglic A; Lackner F; Nagaraj C; Beaumont M; Bračič M; Duarte I; Kononenko V; Drobne D; Madhan B; Finšgar M; Kargl R; Stana Kleinschek K; Mohan T ACS Appl Bio Mater; 2023 Dec; 6(12):5596-5608. PubMed ID: 38050684 [TBL] [Abstract][Full Text] [Related]
4. 3D Printed Porous Nanocellulose-Based Scaffolds As Carriers for Immobilization of Glycosyltransferases. Lackner F; Liu H; Štiglic AD; Bračič M; Kargl R; Nidetzky B; Mohan T; Kleinschek KS ACS Appl Bio Mater; 2022 Dec; 5(12):5728-5740. PubMed ID: 36469033 [TBL] [Abstract][Full Text] [Related]
5. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
6. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. Matinfar M; Mesgar AS; Mohammadi Z Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():341-353. PubMed ID: 30948070 [TBL] [Abstract][Full Text] [Related]
8. Influence of Charge and Heat on the Mechanical Properties of Scaffolds from Ionic Complexation of Chitosan and Carboxymethyl Cellulose. Dobaj Štiglic A; Kargl R; Beaumont M; Strauss C; Makuc D; Egger D; Plavec J; Rojas OJ; Stana Kleinschek K; Mohan T ACS Biomater Sci Eng; 2021 Aug; 7(8):3618-3632. PubMed ID: 34264634 [TBL] [Abstract][Full Text] [Related]
9. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
10. Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering. Mallakpour S; Tukhani M; Hussain CM Adv Colloid Interface Sci; 2021 Jun; 292():102415. PubMed ID: 33892215 [TBL] [Abstract][Full Text] [Related]
11. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
13. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810 [TBL] [Abstract][Full Text] [Related]
14. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks. Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781 [TBL] [Abstract][Full Text] [Related]
15. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Wang C; Zhao Q; Wang M Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918 [TBL] [Abstract][Full Text] [Related]
16. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture. Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007 [TBL] [Abstract][Full Text] [Related]
17. [Study on preparation of 3D printing degradable tissue engineering ossicles]. Lu XX; Li XX; Zhao DH; Ji JY; Tong BS; Sun JJ Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Aug; 55(8):764-768. PubMed ID: 32791775 [No Abstract] [Full Text] [Related]
18. Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Zennifer A; Senthilvelan P; Sethuraman S; Sundaramurthi D Carbohydr Polym; 2021 Mar; 256():117561. PubMed ID: 33483063 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional porous bioscaffolds for bone tissue regeneration: fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Mallick KK; Winnett J; van Grunsven W; Lapworth J; Reilly GC J Biomed Mater Res A; 2012 Nov; 100(11):2948-59. PubMed ID: 22696264 [TBL] [Abstract][Full Text] [Related]
20. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Huan S; Ajdary R; Bai L; Klar V; Rojas OJ Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]