These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35019320)
21. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
22. Pectin-GPTMS-Based Biomaterial: toward a Sustainable Bioprinting of 3D scaffolds for Tissue Engineering Application. Lapomarda A; De Acutis A; Chiesa I; Fortunato GM; Montemurro F; De Maria C; Mattioli Belmonte M; Gottardi R; Vozzi G Biomacromolecules; 2020 Feb; 21(2):319-327. PubMed ID: 31808680 [TBL] [Abstract][Full Text] [Related]
23. Risedronate-loaded aerogel scaffolds for bone regeneration. El-Wakil N; Kamel R; Mahmoud AA; Dufresne A; Abouzeid RE; Abo El-Fadl MT; Maged A Drug Deliv; 2023 Dec; 30(1):51-63. PubMed ID: 36474425 [TBL] [Abstract][Full Text] [Related]
24. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
25. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
26. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355 [TBL] [Abstract][Full Text] [Related]
27. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent. Mi HY; Jing X; Salick MR; Cordie TM; Turng LS J Mech Behav Biomed Mater; 2016 Sep; 62():417-427. PubMed ID: 27266475 [TBL] [Abstract][Full Text] [Related]
28. 3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks. Baniasadi H; Polez RT; Kimiaei E; Madani Z; Rojas OJ; Österberg M; Seppälä J Int J Biol Macromol; 2021 Dec; 192():1098-1107. PubMed ID: 34666132 [TBL] [Abstract][Full Text] [Related]
29. Development of Biomimetic Hybrid Porous Scaffold of Chitosan/Polyvinyl Alcohol/Carboxymethyl Cellulose by Freeze-Dried and Salt Leached Technique. Kanimozhi K; Basha SK; Kumari VS; Kaviyarasu K J Nanosci Nanotechnol; 2018 Jul; 18(7):4916-4922. PubMed ID: 29442674 [TBL] [Abstract][Full Text] [Related]
30. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
31. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
32. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172 [TBL] [Abstract][Full Text] [Related]
33. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Hasan A; Waibhaw G; Saxena V; Pandey LM Int J Biol Macromol; 2018 May; 111():923-934. PubMed ID: 29415416 [TBL] [Abstract][Full Text] [Related]
34. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Sultan S; Mathew AP Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572 [TBL] [Abstract][Full Text] [Related]
35. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Fu Q; Saiz E; Tomsia AP Acta Biomater; 2011 Oct; 7(10):3547-54. PubMed ID: 21745606 [TBL] [Abstract][Full Text] [Related]
36. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
37. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692 [TBL] [Abstract][Full Text] [Related]
38. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
39. Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking. Vadillo J; Larraza I; Calvo-Correas T; Martin L; Derail C; Eceiza A Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433126 [TBL] [Abstract][Full Text] [Related]
40. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Gupta D; Vashisth P; Bellare J Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]