These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35019320)

  • 41. 3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels.
    Nelson C; Tuladhar S; Launen L; Habib A
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D-printing-assisted fabrication of chitosan scaffolds from different sources and cross-linkers for dental tissue engineering.
    EzEldeen M; Loos J; Mousavi Nejad Z; Cristaldi M; Murgia D; Braem A; Jacobs R
    Eur Cell Mater; 2021 May; 41():485-501. PubMed ID: 33948929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polymeric 3D scaffolds for tissue regeneration: Evaluation of biopolymer nanocomposite reinforced with cellulose nanofibrils.
    Campodoni E; Heggset EB; Rashad A; Ramírez-Rodríguez GB; Mustafa K; Syverud K; Tampieri A; Sandri M
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():867-878. PubMed ID: 30423774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure.
    Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.
    Sun K; Li R; Jiang W; Sun Y; Li H
    Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications.
    Zafeiris K; Brasinika D; Karatza A; Koumoulos E; Karoussis IK; Kyriakidou K; Charitidis CA
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111639. PubMed ID: 33321677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical Enhancement of Cytocompatible 3D Scaffolds, Consisting of Hydroxyapatite Nanocrystals and Natural Biomolecules, Through Physical Cross-Linking.
    Brasinika D; Koumoulos EP; Kyriakidou K; Gkartzou E; Kritikou M; Karoussis IK; Charitidis CA
    Bioengineering (Basel); 2020 Aug; 7(3):. PubMed ID: 32825042
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering.
    Sadeghianmaryan A; Naghieh S; Alizadeh Sardroud H; Yazdanpanah Z; Afzal Soltani Y; Sernaglia J; Chen X
    Int J Biol Macromol; 2020 Dec; 164():3179-3192. PubMed ID: 32853616
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles.
    Saberi A; Behnamghader A; Aghabarari B; Yousefi A; Majda D; Huerta MVM; Mozafari M
    Int J Biol Macromol; 2022 May; 207():9-22. PubMed ID: 35181332
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering.
    Im S; Choe G; Seok JM; Yeo SJ; Lee JH; Kim WD; Lee JY; Park SA
    Int J Biol Macromol; 2022 Apr; 205():520-529. PubMed ID: 35217077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.