These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 35019353)
21. Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Tang Z; Xiao Y; Kong N; Liu C; Chen W; Huang X; Xu D; Ouyang J; Feng C; Wang C; Wang J; Zhang H; Tao W Acta Pharm Sin B; 2021 Nov; 11(11):3447-3464. PubMed ID: 34900529 [TBL] [Abstract][Full Text] [Related]
22. Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. Valic MS; Halim M; Schimmer P; Zheng G J Control Release; 2020 Jul; 323():83-101. PubMed ID: 32278829 [TBL] [Abstract][Full Text] [Related]
23. Recent advances in exploitation of nanomaterial for arsenic removal from water: a review. Wong W; Wong HY; Badruzzaman AB; Goh HH; Zaman M Nanotechnology; 2017 Jan; 28(4):042001. PubMed ID: 27997365 [TBL] [Abstract][Full Text] [Related]
24. No king without a crown--impact of the nanomaterial-protein corona on nanobiomedicine. Docter D; Strieth S; Westmeier D; Hayden O; Gao M; Knauer SK; Stauber RH Nanomedicine (Lond); 2015 Feb; 10(3):503-19. PubMed ID: 25707981 [TBL] [Abstract][Full Text] [Related]
25. Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials. Wang X; Cui X; Zhao Y; Chen C Sci China Life Sci; 2020 Aug; 63(8):1168-1182. PubMed ID: 32458255 [TBL] [Abstract][Full Text] [Related]
26. Poly(2-methyl-2-oxazoline)-b-poly(tetrahydrofuran)-b-poly(2-methyl-2-oxazoline) amphiphilic triblock copolymers: synthesis, physicochemical characterizations, and hydrosolubilizing properties. Rasolonjatovo B; Gomez JP; Même W; Gonçalves C; Huin C; Bennevault-Celton V; Le Gall T; Montier T; Lehn P; Cheradame H; Midoux P; Guégan P Biomacromolecules; 2015 Mar; 16(3):748-56. PubMed ID: 25517924 [TBL] [Abstract][Full Text] [Related]
27. Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade. Qiu TA; Clement PL; Haynes CL Chem Commun (Camb); 2018 Nov; 54(91):12787-12803. PubMed ID: 30357136 [TBL] [Abstract][Full Text] [Related]
28. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity. Harper B; Thomas D; Chikkagoudar S; Baker N; Tang K; Heredia-Langner A; Lins R; Harper S J Nanopart Res; 2015; 17(6):250. PubMed ID: 26069453 [TBL] [Abstract][Full Text] [Related]
29. Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling. Ojha PK; Kar S; Roy K; Leszczynski J Nanotoxicology; 2019 Feb; 13(1):14-34. PubMed ID: 30354872 [TBL] [Abstract][Full Text] [Related]
30. The potential of protein-nanomaterial interaction for advanced drug delivery. Peng Q; Mu H J Control Release; 2016 Mar; 225():121-32. PubMed ID: 26812004 [TBL] [Abstract][Full Text] [Related]
31. The carcinogenic potential of nanomaterials, their release from products and options for regulating them. Becker H; Herzberg F; Schulte A; Kolossa-Gehring M Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363 [TBL] [Abstract][Full Text] [Related]
32. Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions. He X; Fu P; Aker WG; Hwang HM J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018 Jan; 36(1):21-42. PubMed ID: 29297743 [TBL] [Abstract][Full Text] [Related]
33. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy. Shang L; Nienhaus GU Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686 [TBL] [Abstract][Full Text] [Related]
34. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Yan X; Sedykh A; Wang W; Yan B; Zhu H Nat Commun; 2020 May; 11(1):2519. PubMed ID: 32433469 [TBL] [Abstract][Full Text] [Related]
35. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM). Westmeier D; Stauber RH; Docter D Toxicol Appl Pharmacol; 2016 May; 299():53-7. PubMed ID: 26592323 [TBL] [Abstract][Full Text] [Related]
36. Impact of the protein corona on nanomaterial immune response and targeting ability. Digiacomo L; Pozzi D; Palchetti S; Zingoni A; Caracciolo G Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1615. PubMed ID: 32003104 [TBL] [Abstract][Full Text] [Related]
37. Understanding and Designing the Gold-Bio Interface: Insights from Simulations. Charchar P; Christofferson AJ; Todorova N; Yarovsky I Small; 2016 May; 12(18):2395-418. PubMed ID: 27007031 [TBL] [Abstract][Full Text] [Related]
38. NanoEHS beyond Toxicity - Focusing on Biocorona. Lin S; Mortimer M; Chen R; Kakinen A; Riviere JE; Davis TP; Ding F; Ke PC Environ Sci Nano; 2017 Jul; 7(4):1433-1454. PubMed ID: 29123668 [TBL] [Abstract][Full Text] [Related]
39. A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective. Mikolajczyk A; Sizochenko N; Mulkiewicz E; Malankowska A; Rasulev B; Puzyn T Nanoscale; 2019 Jun; 11(24):11808-11818. PubMed ID: 31184677 [TBL] [Abstract][Full Text] [Related]
40. A New Hope: Self-Assembling Peptides with Antimicrobial Activity. Lombardi L; Falanga A; Del Genio V; Galdiero S Pharmaceutics; 2019 Apr; 11(4):. PubMed ID: 30987353 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]