These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 35019378)
1. Chemo-Radiative Stress of Plasma as a Modulator of Charge-Dependent Nanodiamond Cytotoxicity. Wang P; Zhou R; Zhou R; Recek N; Prasad K; Speight R; Richard D; Cullen PJ; Thompson EW; Ostrikov KK; Bazaka K ACS Appl Bio Mater; 2020 Oct; 3(10):7202-7210. PubMed ID: 35019378 [TBL] [Abstract][Full Text] [Related]
2. Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Zhu Y; Zhang Y; Shi G; Yang J; Zhang J; Li W; Li A; Tai R; Fang H; Fan C; Huang Q Part Fibre Toxicol; 2015 Feb; 12():2. PubMed ID: 25651858 [TBL] [Abstract][Full Text] [Related]
4. Nanodiamonds of Different Surface Chemistry Influence the Toxicity and Differentiation of Rat Bone Mesenchymal Stem Cells Zhang Y; Zhang W; Fedutik Y; Mao Z; Gao C J Nanosci Nanotechnol; 2019 Sep; 19(9):5426-5434. PubMed ID: 30961692 [TBL] [Abstract][Full Text] [Related]
5. Nanodiamond Effects on Cancer Cell Radiosensitivity: The Interplay between Their Chemical/Physical Characteristics and the Irradiation Energy. Varzi V; Fratini E; Falconieri M; Giovannini D; Cemmi A; Scifo J; Di Sarcina I; Aprà P; Sturari S; Mino L; Tomagra G; Infusino E; Landoni V; Marino C; Mancuso M; Picollo F; Pazzaglia S Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38068942 [TBL] [Abstract][Full Text] [Related]
6. A multifunctional nanodiamond-based nanoplatform for the enhanced mild-temperature photothermal/chemo combination therapy of triple negative breast cancer via an autophagy regulation strategy. Cui X; Liang Z; Lu J; Wang X; Jia F; Hu Q; Xiao X; Deng X; Wu Y; Sheng W Nanoscale; 2021 Aug; 13(31):13375-13389. PubMed ID: 34477743 [TBL] [Abstract][Full Text] [Related]
7. Does age pay off? Effects of three-generational experiments of nanodiamond exposure and withdrawal in wild and longevity-selected model animals. Augustyniak M; Babczyńska A; Dziewięcka M; Flasz B; Karpeta-Kaczmarek J; Kędziorski A; Mazur B; Rozpędek K; Seyed Alian R; Skowronek M; Świerczek E; Świętek A; Tarnawska M; Wiśniewska K; Ziętara P Chemosphere; 2022 Sep; 303(Pt 2):135129. PubMed ID: 35636606 [TBL] [Abstract][Full Text] [Related]
8. Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation. Zhou R; Wang P; Guo Y; Dai X; Xiao S; Fang Z; Speight R; Thompson EW; Cullen PJ; Ostrikov KK Nanoscale; 2019 Nov; 11(41):19497-19505. PubMed ID: 31553036 [TBL] [Abstract][Full Text] [Related]
10. Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study. Brož A; Bačáková L; Štenclová P; Kromka A; Potocký Š Beilstein J Nanotechnol; 2017; 8():1649-1657. PubMed ID: 28875102 [TBL] [Abstract][Full Text] [Related]
11. Anchored but not internalized: shape dependent endocytosis of nanodiamond. Zhang B; Feng X; Yin H; Ge Z; Wang Y; Chu Z; Raabova H; Vavra J; Cigler P; Liu R; Wang Y; Li Q Sci Rep; 2017 Apr; 7():46462. PubMed ID: 28406172 [TBL] [Abstract][Full Text] [Related]
12. The Toxicity of Polystyrene-Based Nanoparticles in Ozbek O; O Ulgen K; Ileri Ercan N Chem Res Toxicol; 2021 Apr; 34(4):1055-1068. PubMed ID: 33710856 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of mycotoxins on modified nanodiamond substrates. Gibson NM; Luo TJ; Brenner DW; Shenderova O Biointerphases; 2011 Dec; 6(4):210-7. PubMed ID: 22239814 [TBL] [Abstract][Full Text] [Related]
14. Toxicity of nanodiamonds to white rot fungi Phanerochaete chrysosporium through oxidative stress. Ma Q; Zhang Q; Yang S; Yilihamu A; Shi M; Ouyang B; Guan X; Yang ST Colloids Surf B Biointerfaces; 2020 Mar; 187():110658. PubMed ID: 31810567 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of cytotoxicity of detonation nanodiamond particles with an osteosarcoma cell line and primary mesenchymal stem cells. Keremidarska M; Ganeva A; Mitev D; Hikov T; Presker R; Pramatarova L; Krasteva N Biotechnol Biotechnol Equip; 2014 Jul; 28(4):733-739. PubMed ID: 26019557 [TBL] [Abstract][Full Text] [Related]
16. Polyamidoamine-Decorated Nanodiamonds as a Hybrid Gene Delivery Vector and siRNA Structural Characterization at the Charged Interfaces. Lim DG; Rajasekaran N; Lee D; Kim NA; Jung HS; Hong S; Shin YK; Kang E; Jeong SH ACS Appl Mater Interfaces; 2017 Sep; 9(37):31543-31556. PubMed ID: 28853284 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds. Curtis CK; Marek A; Smirnov AI; Krim J Beilstein J Nanotechnol; 2017; 8():2045-2059. PubMed ID: 29046852 [TBL] [Abstract][Full Text] [Related]
19. Zhang T; Cui H; Fang CY; Jo J; Yang X; Chang HC; Forrest ML Proc SPIE Int Soc Opt Eng; 2013 Sep; 8815():. PubMed ID: 25620857 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Oral Delivery of Curcumin via Vitamin E TPGS Modified Nanodiamonds: a Comparative Study on the Efficacy of Non-covalent and Covalent Conjugated Strategies. Liu D; Qiao S; Cheng B; Li D; Chen J; Wu Q; Pan H; Pan W AAPS PharmSciTech; 2020 Jul; 21(5):187. PubMed ID: 32642862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]