BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35019383)

  • 1. Role of Polymer Excipients in the Kinetic Stabilization of Drug-Rich Nanoparticles.
    Van Zee NJ; Hillmyer MA; Lodge TP
    ACS Appl Bio Mater; 2020 Oct; 3(10):7243-7254. PubMed ID: 35019383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution and Solubility Enhancement of the Highly Lipophilic Drug Phenytoin via Interaction with Poly(N-isopropylacrylamide-co-vinylpyrrolidone) Excipients.
    Widanapathirana L; Tale S; Reineke TM
    Mol Pharm; 2015 Jul; 12(7):2537-43. PubMed ID: 26046484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-state polymer assemblies influence BCS class II drug dissolution and supersaturation maintenance.
    Dalsin MC; Tale S; Reineke TM
    Biomacromolecules; 2014 Feb; 15(2):500-11. PubMed ID: 24328187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Congruent release of drug and polymer: A "sweet spot" in the dissolution of amorphous solid dispersions.
    Saboo S; Mugheirbi NA; Zemlyanov DY; Kestur US; Taylor LS
    J Control Release; 2019 Mar; 298():68-82. PubMed ID: 30731151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer Nanogels as Reservoirs To Inhibit Hydrophobic Drug Crystallization.
    Li Z; Van Zee NJ; Bates FS; Lodge TP
    ACS Nano; 2019 Feb; 13(2):1232-1243. PubMed ID: 30648859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance.
    Indulkar AS; Lou X; Zhang GGZ; Taylor LS
    Mol Pharm; 2019 Mar; 16(3):1327-1339. PubMed ID: 30669846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug Release and Nanodroplet Formation from Amorphous Solid Dispersions: Insight into the Roles of Drug Physicochemical Properties and Polymer Selection.
    Yang R; Mann AKP; Van Duong T; Ormes JD; Okoh GA; Hermans A; Taylor LS
    Mol Pharm; 2021 May; 18(5):2066-2081. PubMed ID: 33784104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-TEM and AFM Observation of the Time-Dependent Evolution of Amorphous Probucol Nanoparticles Formed by the Aqueous Dispersion of Ternary Solid Dispersions.
    Zhao Z; Katai H; Higashi K; Ueda K; Kawakami K; Moribe K
    Mol Pharm; 2019 May; 16(5):2184-2198. PubMed ID: 30925218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(vinylpyridine-
    Liu YS; Della Rocca J; Schenck L; Koynov A; Sifri RJ; Winston MS; Frank DS
    Mol Pharm; 2024 Mar; 21(3):1182-1191. PubMed ID: 38323546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition.
    Saboo S; Kestur US; Flaherty DP; Taylor LS
    Mol Pharm; 2020 Apr; 17(4):1261-1275. PubMed ID: 32134677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution.
    Purohit HS; Taylor LS
    Pharm Res; 2017 Dec; 34(12):2842-2861. PubMed ID: 28956218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels.
    Schver GCRM; Lee PI
    Mol Pharm; 2018 May; 15(5):2017-2026. PubMed ID: 29601723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs.
    Sarode AL; Wang P; Obara S; Worthen DR
    Eur J Pharm Biopharm; 2014 Apr; 86(3):351-60. PubMed ID: 24161655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of supersaturation from amorphous solid dispersions in water-insoluble polymer carriers: Effects of swelling capacity and interplay between partition and diffusion.
    Schver GCRM; Nadvorny D; Lee PI
    Int J Pharm; 2020 May; 581():119292. PubMed ID: 32243967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation into the Solid-State Properties and Dissolution Profile of Spray-Dried Ternary Amorphous Solid Dispersions: A Rational Step toward the Design and Development of a Multicomponent Amorphous System.
    Baghel S; Cathcart H; O'Reilly NJ
    Mol Pharm; 2018 Sep; 15(9):3796-3812. PubMed ID: 30020788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution Mechanisms of Amorphous Solid Dispersions: Role of Drug Load and Molecular Interactions.
    Deac A; Qi Q; Indulkar AS; Purohit HS; Gao Y; Zhang GGZ; Taylor LS
    Mol Pharm; 2023 Jan; 20(1):722-737. PubMed ID: 36545917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and stability of solid dispersions based on PEG/polymer blends.
    Bley H; Fussnegger B; Bodmeier R
    Int J Pharm; 2010 May; 390(2):165-73. PubMed ID: 20132875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and
    Baghel S; Cathcart H; O'Reilly NJ
    Int J Pharm; 2018 Jan; 536(1):414-425. PubMed ID: 29183857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and kinetic evaluation of the impact of polymer excipients on storage stability of amorphous itraconazole.
    Zhang S; Lee TWY; Chow AHL
    Int J Pharm; 2019 Jan; 555():394-403. PubMed ID: 30513399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions.
    Figueirêdo CBM; Nadvorny D; Vieira ACQM; Schver GCRM; Soares Sobrinho JL; Rolim Neto PJ; Lee PI; Soares MFR
    Eur J Pharm Sci; 2018 Jul; 119():208-218. PubMed ID: 29679707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.