BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35019395)

  • 1. Self-Assembly of Protamine Biomacromolecule on Halloysite Nanotubes for Immobilization of Superoxide Dismutase Enzyme.
    Katana B; Rouster P; Varga G; Muráth S; Glinel K; Jonas AM; Szilagyi I
    ACS Appl Bio Mater; 2020 Jan; 3(1):522-530. PubMed ID: 35019395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and formulation of functional bionanomaterials with superoxide dismutase activity.
    Pavlovic M; Rouster P; Szilagyi I
    Nanoscale; 2017 Jan; 9(1):369-379. PubMed ID: 27924343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets.
    Rouster P; Pavlovic M; Szilagyi I
    Chembiochem; 2018 Feb; 19(4):404-410. PubMed ID: 29144009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion Specific Effects on the Stability of Halloysite Nanotube Colloids-Inorganic Salts versus Ionic Liquids.
    Katana B; Takács D; Csapó E; Szabó T; Jamnik A; Szilagyi I
    J Phys Chem B; 2020 Oct; 124(43):9757-9765. PubMed ID: 33076658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Horseradish peroxidase-nanoclay hybrid particles of high functional and colloidal stability.
    Pavlovic M; Rouster P; Somosi Z; Szilagyi I
    J Colloid Interface Sci; 2018 Aug; 524():114-121. PubMed ID: 29635084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of Halloysite Nanotubes in the Presence of Multivalent Ions and Ionic Liquids.
    Katana B; Takács D; Szerlauth A; Sáringer S; Varga G; Jamnik A; Bobbink FD; Dyson PJ; Szilagyi I
    Langmuir; 2021 Oct; 37(40):11869-11879. PubMed ID: 34601883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Papain Adsorption on Latex Particles: Charging, Aggregation, and Enzymatic Activity.
    Sáringer S; Akula RA; Szerlauth A; Szilagyi I
    J Phys Chem B; 2019 Nov; 123(46):9984-9991. PubMed ID: 31670963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-by-layer assembly of enzyme-loaded halloysite nanotubes for the fabrication of highly active coatings.
    Rouster P; Dondelinger M; Galleni M; Nysten B; Jonas AM; Glinel K
    Colloids Surf B Biointerfaces; 2019 Jun; 178():508-514. PubMed ID: 30928390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Protamine Functionalization on the Colloidal Stability of 1D and 2D Titanium Oxide Nanostructures.
    Rouster P; Pavlovic M; Horváth E; Forró L; Dey SK; Szilagyi I
    Langmuir; 2017 Sep; 33(38):9750-9758. PubMed ID: 28829607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes.
    Ghaderi-Ghahfarrokhi M; Haddadi-Asl V; Zargarian SS
    J Biomed Mater Res A; 2018 May; 106(5):1276-1287. PubMed ID: 29314595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-immobilization of antioxidant enzymes on titania nanosheets for reduction of oxidative stress in colloid systems.
    Sáringer S; Rouster P; Szilagyi I
    J Colloid Interface Sci; 2021 May; 590():28-37. PubMed ID: 33524718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered double hydroxide-based antioxidant dispersions with high colloidal and functional stability.
    Szerlauth A; Muráth S; Szilagyi I
    Soft Matter; 2020 Dec; 16(46):10518-10527. PubMed ID: 33073831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled structures of halloysite nanotubes: towards the development of high-performance biomedical materials.
    Zhao X; Zhou C; Liu M
    J Mater Chem B; 2020 Feb; 8(5):838-851. PubMed ID: 31830201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Stability of Titania Nanosheet Dispersions with Oppositely and Like-Charged Polyelectrolytes.
    Sáringer S; Rouster P; Szilágyi I
    Langmuir; 2019 Apr; 35(14):4986-4994. PubMed ID: 30888825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-level understanding of interface interactions in a halloysite nanotubes-PLA nanocomposite.
    Kruglikov A; Vasilchenko A; Kasprzhitskii A; Lazorenko G
    RSC Adv; 2019 Nov; 9(67):39505-39514. PubMed ID: 35540670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of hybrid biocatalysts by controlled heteroaggregation of manganese oxide and sulfate latex particles to combat reactive oxygen species.
    Alsharif NB; Bere K; Sáringer S; Samu GF; Takács D; Hornok V; Szilagyi I
    J Mater Chem B; 2021 Jun; 9(24):4929-4940. PubMed ID: 34105573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of biochemical aspects of lipase adsorbed on halloysite nanotubes and entrapped in a polyvinyl alcohol/alginate hydrogel: strategies to reuse the most stable lipase.
    Mohammadi NS; Khiabani MS; Ghanbarzadeh B; Mokarram RR
    World J Microbiol Biotechnol; 2020 Mar; 36(3):45. PubMed ID: 32130535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Bioactive Properties of Halloysite Nanotubes via Polydopamine Coating.
    Sahiner M; Demirci S; Sahiner N
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual functionality of ferrocene-based metallopolymers as radical scavengers and nanoparticle stabilizing agents.
    Alsharif NB; Halmágyi TG; Hempenius MA; Vancso GJ; Nardin C; Szilagyi I
    Nanoscale; 2023 Jul; 15(28):11875-11883. PubMed ID: 37395070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biopolymer-Targeted Adsorption onto Halloysite Nanotubes in Aqueous Media.
    Bertolino V; Cavallaro G; Lazzara G; Milioto S; Parisi F
    Langmuir; 2017 Apr; 33(13):3317-3323. PubMed ID: 28276693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.