BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35019533)

  • 1. Preparation of Amorphous Poly(aryl ether nitrile ketone) and Its Composites with Nano Hydroxyapatite for 3D Artificial Bone Printing.
    Gao X; Wang H; Zhang X; Gu X; Liu Y; Zhou G; Luan S
    ACS Appl Bio Mater; 2020 Nov; 3(11):7930-7940. PubMed ID: 35019533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling.
    Li Y; Lou Y
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33121088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS.
    Wu W; Geng P; Li G; Zhao D; Zhang H; Zhao J
    Materials (Basel); 2015 Sep; 8(9):5834-5846. PubMed ID: 28793537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites.
    Zheng J; Kang J; Sun C; Yang C; Wang L; Li D
    J Mech Behav Biomed Mater; 2021 Jun; 118():104475. PubMed ID: 33773239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified porous microstructure for improving bone compatibility of poly-ether-ether-ketone.
    Wong KI; Zhong Y; Li D; Cheng Z; Yu Z; Wei M
    J Mech Behav Biomed Mater; 2021 Aug; 120():104541. PubMed ID: 34062372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential.
    Manzoor F; Golbang A; Jindal S; Dixon D; McIlhagger A; Harkin-Jones E; Crawford D; Mancuso E
    J Mech Behav Biomed Mater; 2021 Sep; 121():104601. PubMed ID: 34077906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications.
    Han X; Yang D; Yang C; Spintzyk S; Scheideler L; Li P; Li D; Geis-Gerstorfer J; Rupp F
    J Clin Med; 2019 Feb; 8(2):. PubMed ID: 30759863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printed Strontium and Zinc Doped Hydroxyapatite Loaded PEEK for Craniomaxillofacial Implants.
    Manzoor F; Golbang A; Dixon D; Mancuso E; Azhar U; Manolakis I; Crawford D; McIlhagger A; Harkin-Jones E
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.
    Deng X; Zeng Z; Peng B; Yan S; Ke W
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications.
    Zhao F; Li D; Jin Z
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29439551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Properties of Semicrystalline Poly(ether nitrile ketone) Copolymers.
    Zhu J; Mo C; Tong L; Liu X
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material- A review.
    Oladapo BI; Zahedi SA; Ismail SO; Omigbodun FT
    Colloids Surf B Biointerfaces; 2021 Jul; 203():111726. PubMed ID: 33865088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Direct 3D Printing of Functional PEEK/Hydroxyapatite Composites via a Fused Filament Fabrication Approach.
    Rodzeń K; Sharma PK; McIlhagger A; Mokhtari M; Dave F; Tormey D; Sherlock R; Meenan BJ; Boyd A
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33673299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical, Chemical, and Processing Properties of Specimens Manufactured from Poly-Ether-Ether-Ketone (PEEK) Using 3D Printing.
    Mrówka M; Machoczek T; Jureczko P; Joszko K; Gzik M; Wolański W; Wilk K
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34064115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of 3D Printing Process Parameters and Heat Treatment Conditions on the Mechanical Properties and Microstructure of PEEK Parts.
    Zhen H; Zhao B; Quan L; Fu J
    Polymers (Basel); 2023 May; 15(9):. PubMed ID: 37177355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface porous poly-ether-ether-ketone based on three-dimensional printing for load-bearing orthopedic implant.
    Li S; Wang T; Hu J; Li Z; Wang B; Wang L; Zhou Z
    J Mech Behav Biomed Mater; 2021 Aug; 120():104561. PubMed ID: 33965810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulation of a covalently bonded hydroxyapatite and poly(ether ether ketone) composite.
    Hughes EA; Parkes A; Williams RL; Jenkins MJ; Grover LM
    J Tissue Eng; 2018; 9():2041731418815570. PubMed ID: 30574291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent polymer functionalized graphene oxide/poly(ether ether ketone) composites for fused deposition modeling: improved mechanical and tribological performance.
    Yang C; Xu J; Xing Y; Hao S; Ren Z
    RSC Adv; 2020 Jul; 10(43):25685-25695. PubMed ID: 35518612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility.
    Zheng J; Zhao H; Dong E; Kang J; Liu C; Sun C; Li D; Wang L
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112333. PubMed ID: 34474884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategy for Controlling the Properties of Bioactive Poly-Ether-Ether-Ketone/Hydroxyapatite Composites for Bone Tissue Engineering Scaffolds.
    Zhong G; Vaezi M; Mei X; Liu P; Yang S
    ACS Omega; 2019 Nov; 4(21):19238-19245. PubMed ID: 31763547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.