These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35019533)
1. Preparation of Amorphous Poly(aryl ether nitrile ketone) and Its Composites with Nano Hydroxyapatite for 3D Artificial Bone Printing. Gao X; Wang H; Zhang X; Gu X; Liu Y; Zhou G; Luan S ACS Appl Bio Mater; 2020 Nov; 3(11):7930-7940. PubMed ID: 35019533 [TBL] [Abstract][Full Text] [Related]
2. Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling. Li Y; Lou Y Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33121088 [TBL] [Abstract][Full Text] [Related]
3. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Wu W; Geng P; Li G; Zhao D; Zhang H; Zhao J Materials (Basel); 2015 Sep; 8(9):5834-5846. PubMed ID: 28793537 [TBL] [Abstract][Full Text] [Related]
4. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites. Zheng J; Kang J; Sun C; Yang C; Wang L; Li D J Mech Behav Biomed Mater; 2021 Jun; 118():104475. PubMed ID: 33773239 [TBL] [Abstract][Full Text] [Related]
5. Modified porous microstructure for improving bone compatibility of poly-ether-ether-ketone. Wong KI; Zhong Y; Li D; Cheng Z; Yu Z; Wei M J Mech Behav Biomed Mater; 2021 Aug; 120():104541. PubMed ID: 34062372 [TBL] [Abstract][Full Text] [Related]
6. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential. Manzoor F; Golbang A; Jindal S; Dixon D; McIlhagger A; Harkin-Jones E; Crawford D; Mancuso E J Mech Behav Biomed Mater; 2021 Sep; 121():104601. PubMed ID: 34077906 [TBL] [Abstract][Full Text] [Related]
7. Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications. Han X; Yang D; Yang C; Spintzyk S; Scheideler L; Li P; Li D; Geis-Gerstorfer J; Rupp F J Clin Med; 2019 Feb; 8(2):. PubMed ID: 30759863 [TBL] [Abstract][Full Text] [Related]
8. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling. Deng X; Zeng Z; Peng B; Yan S; Ke W Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385756 [TBL] [Abstract][Full Text] [Related]
10. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications. Zhao F; Li D; Jin Z Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29439551 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and Properties of Semicrystalline Poly(ether nitrile ketone) Copolymers. Zhu J; Mo C; Tong L; Liu X Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257050 [TBL] [Abstract][Full Text] [Related]
12. 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material- A review. Oladapo BI; Zahedi SA; Ismail SO; Omigbodun FT Colloids Surf B Biointerfaces; 2021 Jul; 203():111726. PubMed ID: 33865088 [TBL] [Abstract][Full Text] [Related]
13. The Direct 3D Printing of Functional PEEK/Hydroxyapatite Composites via a Fused Filament Fabrication Approach. Rodzeń K; Sharma PK; McIlhagger A; Mokhtari M; Dave F; Tormey D; Sherlock R; Meenan BJ; Boyd A Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33673299 [TBL] [Abstract][Full Text] [Related]
14. Mechanical, Chemical, and Processing Properties of Specimens Manufactured from Poly-Ether-Ether-Ketone (PEEK) Using 3D Printing. Mrówka M; Machoczek T; Jureczko P; Joszko K; Gzik M; Wolański W; Wilk K Materials (Basel); 2021 May; 14(11):. PubMed ID: 34064115 [TBL] [Abstract][Full Text] [Related]
15. Effect of 3D Printing Process Parameters and Heat Treatment Conditions on the Mechanical Properties and Microstructure of PEEK Parts. Zhen H; Zhao B; Quan L; Fu J Polymers (Basel); 2023 May; 15(9):. PubMed ID: 37177355 [TBL] [Abstract][Full Text] [Related]
16. Surface porous poly-ether-ether-ketone based on three-dimensional printing for load-bearing orthopedic implant. Li S; Wang T; Hu J; Li Z; Wang B; Wang L; Zhou Z J Mech Behav Biomed Mater; 2021 Aug; 120():104561. PubMed ID: 33965810 [TBL] [Abstract][Full Text] [Related]
17. Formulation of a covalently bonded hydroxyapatite and poly(ether ether ketone) composite. Hughes EA; Parkes A; Williams RL; Jenkins MJ; Grover LM J Tissue Eng; 2018; 9():2041731418815570. PubMed ID: 30574291 [TBL] [Abstract][Full Text] [Related]
18. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Zheng J; Zhao H; Dong E; Kang J; Liu C; Sun C; Li D; Wang L Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112333. PubMed ID: 34474884 [TBL] [Abstract][Full Text] [Related]
19. Strategy for Controlling the Properties of Bioactive Poly-Ether-Ether-Ketone/Hydroxyapatite Composites for Bone Tissue Engineering Scaffolds. Zhong G; Vaezi M; Mei X; Liu P; Yang S ACS Omega; 2019 Nov; 4(21):19238-19245. PubMed ID: 31763547 [TBL] [Abstract][Full Text] [Related]