These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 35019614)
61. Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using Rose Bengal Encapsulated in Metallocatanionic Vesicles in the Presence of Visible Light. Sharma B; Thakur V; Kaur G; Chaudhary GR ACS Appl Bio Mater; 2020 Dec; 3(12):8515-8524. PubMed ID: 35019621 [TBL] [Abstract][Full Text] [Related]
62. Photo-enhanced antibacterial activity of polydopamine-curcumin nanocomposites with excellent photodynamic and photothermal abilities. Su R; Yan H; Li P; Zhang B; Zhang Y; Su W Photodiagnosis Photodyn Ther; 2021 Sep; 35():102417. PubMed ID: 34186263 [TBL] [Abstract][Full Text] [Related]
63. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. Jain A; Thakur D; Ghoshal G; Katare OP; Shivhare US Int J Biol Macromol; 2016 Jun; 87():101-13. PubMed ID: 26851204 [TBL] [Abstract][Full Text] [Related]
64. Polyelectrolyte-micelle coacervates: intrapolymer-dominant vs. interpolymer-dominant association, solute uptake and rheological properties. Zhao M; Wang C; Jiang H; Dawadi MB; Vogt BD; Modarelli DA; Zacharia NS Soft Matter; 2019 Apr; 15(14):3043-3054. PubMed ID: 30901008 [TBL] [Abstract][Full Text] [Related]
65. Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Hoang Thi TT; Lee Y; Le Thi P; Park KD Acta Biomater; 2018 Feb; 67():66-78. PubMed ID: 29269330 [TBL] [Abstract][Full Text] [Related]
66. Facile Construction of Functionalized GO Nanocomposites with Enhanced Antibacterial Activity. Jiang L; Zhu Z; Wen Y; Ye S; Su C; Zhang R; Shao W Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31247921 [TBL] [Abstract][Full Text] [Related]
67. Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyldimethylammonium chloride) versus chitosan. Kayitmazer AB; Strand SP; Tribet C; Jaeger W; Dubin PL Biomacromolecules; 2007 Nov; 8(11):3568-77. PubMed ID: 17892297 [TBL] [Abstract][Full Text] [Related]
68. Investigating surface binding effects: antibacterial efficacy of bound 8-hydroxyquinoline against Staphylococcus aureus and Escherichia coli. Richards MN; Johnson GR; Lum JS; McDonald R; Salter WB; Simpson K; Stote RE; Owens JR J Appl Microbiol; 2021 Nov; 131(5):2212-2222. PubMed ID: 33864329 [TBL] [Abstract][Full Text] [Related]
69. Structure-Activity Study of Antibacterial Poly(ester urethane)s with Uniform Distribution of Hydrophobic and Cationic Groups. Peng C; Vishwakarma A; Mankoci S; Barton HA; Joy A Biomacromolecules; 2019 Apr; 20(4):1675-1682. PubMed ID: 30844254 [TBL] [Abstract][Full Text] [Related]
70. In Vivo and In Vitro Anti-Bacterial Efficacy of Absorbable Barbed Polydioxanone Monofilament Tissue Control Device with Triclosan Bhende S; Burkley D; Nawrocki J Surg Infect (Larchmt); 2018; 19(4):430-437. PubMed ID: 29624479 [TBL] [Abstract][Full Text] [Related]
71. Controlled release of tetracycline hydrochloride from poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibers. Ulker Turan C; Metin A; Guvenilir Y Eur J Pharm Biopharm; 2021 May; 162():59-69. PubMed ID: 33727142 [TBL] [Abstract][Full Text] [Related]
72. Secretory phospholipase A2 is the principal bactericide for staphylococci and other gram-positive bacteria in human tears. Qu XD; Lehrer RI Infect Immun; 1998 Jun; 66(6):2791-7. PubMed ID: 9596749 [TBL] [Abstract][Full Text] [Related]
73. Development of specific and selective bactericide by introducing exogenous metabolite of pathogenic bacteria. Cao MH; Tang BH; Ruan Y; Liang XL; Chu XY; Liang ZM; Zhang QY; Zhang HY Eur J Med Chem; 2021 Dec; 225():113808. PubMed ID: 34461506 [TBL] [Abstract][Full Text] [Related]
74. Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Chung YC; Wang HL; Chen YM; Li SL Bioresour Technol; 2003 Jul; 88(3):179-84. PubMed ID: 12618038 [TBL] [Abstract][Full Text] [Related]
75. Albumin Broadens the Antibacterial Capabilities of Nonantibiotic Small Molecule-Capped Gold Nanoparticles. Sun Z; Zheng W; Zhu G; Lian J; Wang J; Hui P; He S; Chen W; Jiang X ACS Appl Mater Interfaces; 2019 Dec; 11(49):45381-45389. PubMed ID: 31721554 [TBL] [Abstract][Full Text] [Related]
77. The use of immunoliposomes for specific delivery of antimicrobial agents to oral bacteria immobilized on polystyrene. Robinson AM; Creeth JE; Jones MN J Biomater Sci Polym Ed; 2000; 11(12):1381-93. PubMed ID: 11261879 [TBL] [Abstract][Full Text] [Related]
78. Facile Assembly of Multifunctional Antibacterial Nanoplatform Leveraging Synergistic Sensitization between Silver Nanostructure and Vancomycin. Ma K; Dong P; Liang M; Yu S; Chen Y; Wang F ACS Appl Mater Interfaces; 2020 Feb; 12(6):6955-6965. PubMed ID: 31977179 [TBL] [Abstract][Full Text] [Related]
79. Plants of the Cerrado with antimicrobial effects against Staphylococcus spp. and Escherichia coli from cattle. de O Ribeiro IC; Mariano EGA; Careli RT; Morais-Costa F; de Sant'Anna FM; Pinto MS; de Souza MR; Duarte ER BMC Vet Res; 2018 Jan; 14(1):32. PubMed ID: 29382347 [TBL] [Abstract][Full Text] [Related]