These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 35020012)
1. Influence of diabetes mellitus on the diagnostic performance of machine learning-based coronary CT angiography-derived fractional flow reserve: a multicenter study. Xue Y; Zheng MW; Hou Y; Zhou F; Li JH; Wang YN; Liu CY; Zhou CS; Zhang JY; Yu MM; Zhang B; Zhang DM; Yi Y; Xu L; Hu XH; Lu GM; Tang CX; Zhang LJ Eur Radiol; 2022 Jun; 32(6):3778-3789. PubMed ID: 35020012 [TBL] [Abstract][Full Text] [Related]
2. Influence of Coronary Calcification on the Diagnostic Performance of CT Angiography Derived FFR in Coronary Artery Disease: A Substudy of the NXT Trial. Nørgaard BL; Gaur S; Leipsic J; Ito H; Miyoshi T; Park SJ; Zvaigzne L; Tzemos N; Jensen JM; Hansson N; Ko B; Bezerra H; Christiansen EH; Kaltoft A; Lassen JF; Bøtker HE; Achenbach S JACC Cardiovasc Imaging; 2015 Sep; 8(9):1045-1055. PubMed ID: 26298072 [TBL] [Abstract][Full Text] [Related]
3. Detecting lesion-specific ischemia in patients with coronary artery disease with computed tomography fractional flow reserve measured at different sites. Cai Z; Yu T; Yang Z; Hu H; Lin Y; Zhang H; Chen M; Shi G; Shen J BMC Med Imaging; 2023 Jun; 23(1):76. PubMed ID: 37277697 [TBL] [Abstract][Full Text] [Related]
4. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. Tesche C; Otani K; De Cecco CN; Coenen A; De Geer J; Kruk M; Kim YH; Albrecht MH; Baumann S; Renker M; Bayer RR; Duguay TM; Litwin SE; Varga-Szemes A; Steinberg DH; Yang DH; Kepka C; Persson A; Nieman K; Schoepf UJ JACC Cardiovasc Imaging; 2020 Mar; 13(3):760-770. PubMed ID: 31422141 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning From Quantitative Coronary Computed Tomography Angiography Predicts Fractional Flow Reserve-Defined Ischemia and Impaired Myocardial Blood Flow. Lin A; van Diemen PA; Motwani M; McElhinney P; Otaki Y; Han D; Kwan A; Tzolos E; Klein E; Kuronuma K; Grodecki K; Shou B; Rios R; Manral N; Cadet S; Danad I; Driessen RS; Berman DS; Nørgaard BL; Slomka PJ; Knaapen P; Dey D Circ Cardiovasc Imaging; 2022 Oct; 15(10):e014369. PubMed ID: 36252116 [TBL] [Abstract][Full Text] [Related]
7. Impact of machine learning-based coronary computed tomography angiography fractional flow reserve on treatment decisions and clinical outcomes in patients with suspected coronary artery disease. Qiao HY; Tang CX; Schoepf UJ; Tesche C; Bayer RR; Giovagnoli DA; Todd Hudson H; Zhou CS; Yan J; Lu MJ; Zhou F; Lu GM; Jiang JW; Zhang LJ Eur Radiol; 2020 Nov; 30(11):5841-5851. PubMed ID: 32462444 [TBL] [Abstract][Full Text] [Related]
8. Dynamic Stress Computed Tomography Perfusion With a Whole-Heart Coverage Scanner in Addition to Coronary Computed Tomography Angiography and Fractional Flow Reserve Computed Tomography Derived. Pontone G; Baggiano A; Andreini D; Guaricci AI; Guglielmo M; Muscogiuri G; Fusini L; Soldi M; Del Torto A; Mushtaq S; Conte E; Calligaris G; De Martini S; Ferrari C; Galli S; Grancini L; Olivares P; Ravagnani P; Teruzzi G; Trabattoni D; Fabbiocchi F; Montorsi P; Rabbat MG; Bartorelli AL; Pepi M JACC Cardiovasc Imaging; 2019 Dec; 12(12):2460-2471. PubMed ID: 31005531 [TBL] [Abstract][Full Text] [Related]
9. Optimized interpretation of fractional flow reserve derived from computed tomography: Comparison of three interpretation methods. Takagi H; Ishikawa Y; Orii M; Ota H; Niiyama M; Tanaka R; Morino Y; Yoshioka K J Cardiovasc Comput Tomogr; 2019; 13(2):134-141. PubMed ID: 30385326 [TBL] [Abstract][Full Text] [Related]
10. The influence of image quality on diagnostic performance of a machine learning-based fractional flow reserve derived from coronary CT angiography. Xu PP; Li JH; Zhou F; Jiang MD; Zhou CS; Lu MJ; Tang CX; Zhang XL; Yang L; Zhang YX; Wang YN; Zhang JY; Yu MM; Hou Y; Zheng MW; Zhang B; Zhang DM; Yi Y; Xu L; Hu XH; Liu H; Lu GM; Ni QQ; Zhang LJ Eur Radiol; 2020 May; 30(5):2525-2534. PubMed ID: 32006167 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic performance of corrected FFR Wen D; Zhao H; Zhong S; Li C; Liu B; An R; Zheng M Eur Radiol; 2021 Dec; 31(12):9232-9239. PubMed ID: 34080038 [TBL] [Abstract][Full Text] [Related]
12. Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice. Kawaji T; Shiomi H; Morishita H; Morimoto T; Taylor CA; Kanao S; Koizumi K; Kozawa S; Morihiro K; Watanabe H; Tazaki J; Imai M; Saito N; Shizuta S; Ono K; Togashi K; Kimura T Int J Cardiovasc Imaging; 2017 Feb; 33(2):271-281. PubMed ID: 27718139 [TBL] [Abstract][Full Text] [Related]
13. Diagnostic and Clinical Value of FFR Mickley H; Veien KT; Gerke O; Lambrechtsen J; Rohold A; Steffensen FH; Husic M; Akkan D; Busk M; Jessen LB; Jensen LO; Diederichsen A; Øvrehus KA JACC Cardiovasc Imaging; 2022 Jun; 15(6):1046-1058. PubMed ID: 35680213 [TBL] [Abstract][Full Text] [Related]
14. Non-invasive CT-derived fractional flow reserve and static rest and stress CT myocardial perfusion imaging for detection of haemodynamically significant coronary stenosis. Ko BS; Linde JJ; Ihdayhid AR; Norgaard BL; Kofoed KF; Sørgaard M; Adams D; Crossett M; Cameron JD; Seneviratne SK Int J Cardiovasc Imaging; 2019 Nov; 35(11):2103-2112. PubMed ID: 31273632 [TBL] [Abstract][Full Text] [Related]
15. Influence of reconstruction kernels on the accuracy of CT-derived fractional flow reserve. Ammon F; Moshage M; Smolka S; Goeller M; Bittner DO; Achenbach S; Marwan M Eur Radiol; 2022 Apr; 32(4):2604-2610. PubMed ID: 34735608 [TBL] [Abstract][Full Text] [Related]
16. The effect of coronary calcification on diagnostic performance of machine learning-based CT-FFR: a Chinese multicenter study. Di Jiang M; Zhang XL; Liu H; Tang CX; Li JH; Wang YN; Xu PP; Zhou CS; Zhou F; Lu MJ; Zhang JY; Yu MM; Hou Y; Zheng MW; Zhang B; Zhang DM; Yi Y; Xu L; Hu XH; Yang J; Lu GM; Ni QQ; Zhang LJ Eur Radiol; 2021 Mar; 31(3):1482-1493. PubMed ID: 32929641 [TBL] [Abstract][Full Text] [Related]
17. Diagnostic Performance of CT-Derived Fractional Flow Reserve in Australian Patients Referred for Invasive Coronary Angiography. Chua A; Ihdayhid AR; Linde JJ; Sørgaard M; Cameron JD; Seneviratne SK; Ko BS Heart Lung Circ; 2022 Aug; 31(8):1102-1109. PubMed ID: 35501246 [TBL] [Abstract][Full Text] [Related]
18. A stepwise strategy integrating dynamic stress CT myocardial perfusion and deep learning-based FFR Lyu L; Pan J; Li D; Yu D; Li X; Yang W; Dong M; Han Y; Liang Y; Zhang P; Zhang M Eur Radiol; 2024 Aug; 34(8):4939-4949. PubMed ID: 38214735 [TBL] [Abstract][Full Text] [Related]
19. One-year outcomes of CCTA alone versus machine learning-based FFR Qiao HY; Tang CX; Schoepf UJ; Bayer RR; Tesche C; Di Jiang M; Yin CQ; Zhou CS; Zhou F; Lu MJ; Jiang JW; Lu GM; Ni QQ; Zhang LJ Eur Radiol; 2022 Aug; 32(8):5179-5188. PubMed ID: 35175380 [TBL] [Abstract][Full Text] [Related]
20. The diagnostic performance of SPECT-MPI to predict functional significant coronary artery disease by fractional flow reserve derived from CCTA (FFR Nakanishi R; Osawa K; Ceponiene I; Huth G; Cole J; Kim M; Nezarat N; Rahmani S; Li D; Gupta S; Rogers C; Dailing C; Budoff MJ Int J Cardiovasc Imaging; 2017 Dec; 33(12):2067-2072. PubMed ID: 28699019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]