These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 35020214)

  • 1. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin.
    Perico C; Tan S; Langdale JA
    New Phytol; 2022 May; 234(3):783-803. PubMed ID: 35020214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed in situ hybridization reveals distinct lineage identities for major and minor vein initiation during maize leaf development.
    Perico C; Zaidem M; Sedelnikova O; Bhattacharya S; Korfhage C; Langdale JA
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2402514121. PubMed ID: 38959034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative venation costs of monocotyledon and dicotyledon species in the eastern Colorado steppe.
    Drobnitch ST; Kray JA; Gleason SM; Ocheltree TW
    Planta; 2024 May; 260(1):2. PubMed ID: 38761315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanisms of development in monocot and eudicot leaves.
    Conklin PA; Strable J; Li S; Scanlon MJ
    New Phytol; 2019 Jan; 221(2):706-724. PubMed ID: 30106472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic divisions in vascular and ground tissues of Arabidopsis thaliana result in distinct leaf venation defects.
    Wenzel CL; Marrison J; Mattsson J; Haseloff J; Bougourd SM
    J Exp Bot; 2012 Sep; 63(14):5351-64. PubMed ID: 22936832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogeny of the sheathing leaf base in maize (Zea mays).
    Johnston R; Leiboff S; Scanlon MJ
    New Phytol; 2015 Jan; 205(1):306-15. PubMed ID: 25195692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of the diversity of leaf venation pattern.
    Fujita H; Mochizuki A
    Dev Dyn; 2006 Oct; 235(10):2710-21. PubMed ID: 16894601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption.
    Sack L; Dietrich EM; Streeter CM; Sánchez-Gómez D; Holbrook NM
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1567-72. PubMed ID: 18227511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis.
    Robles P; Fleury D; Candela H; Cnops G; Alonso-Peral MM; Anami S; Falcone A; Caldana C; Willmitzer L; Ponce MR; Van Lijsebettens M; Micol JL
    Plant Physiol; 2010 Mar; 152(3):1357-72. PubMed ID: 20044451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology.
    Zwieniecki MA; Boyce CK
    Proc Biol Sci; 2014 Mar; 281(1779):20132829. PubMed ID: 24478301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis thaliana homeodomain-leucine zipper type I transcription factors contribute to control leaf venation patterning.
    Moreno JE; Romani F; Chan RL
    Plant Signal Behav; 2018 Mar; 13(3):e1448334. PubMed ID: 29509063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin-mediated regulation of vascular patterning in Arabidopsis thaliana leaves.
    Biedroń M; Banasiak A
    Plant Cell Rep; 2018 Sep; 37(9):1215-1229. PubMed ID: 29992374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1179-1194. PubMed ID: 30714286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canalization-based vein formation in a growing leaf.
    Lee SW; Feugier FG; Morishita Y
    J Theor Biol; 2014 Jul; 353():104-20. PubMed ID: 24632445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis.
    Alonso-Peral MM; Candela H; del Pozo JC; Martínez-Laborda A; Ponce MR; Micol JL
    Development; 2006 Oct; 133(19):3755-66. PubMed ID: 16943276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A constant production hypothesis guides leaf venation patterning.
    Dimitrov P; Zucker SW
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9363-8. PubMed ID: 16754846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis.
    Aloni R; Schwalm K; Langhans M; Ullrich CI
    Planta; 2003 Mar; 216(5):841-53. PubMed ID: 12624772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for LAX2 in regulating xylem development and lateral-vein symmetry in the leaf.
    Moreno-Piovano GS; Moreno JE; Cabello JV; Arce AL; Otegui ME; Chan RL
    Ann Bot; 2017 Oct; 120(4):577-590. PubMed ID: 28981582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network feature-based phenotyping of leaf venation robustly reconstructs the latent space.
    Iwamasa K; Noshita K
    PLoS Comput Biol; 2023 Jul; 19(7):e1010581. PubMed ID: 37471283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stomatal development and orientation: a phylogenetic and ecophysiological perspective.
    Rudall PJ
    Ann Bot; 2023 Aug; 131(7):1039-1050. PubMed ID: 37288594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.