BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35020276)

  • 21. Evaluation of a laparoscopic grasper with force feedback.
    Hu T; Tholey G; Desai JP; Castellanos AE
    Surg Endosc; 2004 May; 18(5):863-7. PubMed ID: 15054651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grasper integrated tri-axial force sensor system for robotic minimally invasive surgery.
    Yuan Dai ; Abiri A; Siyuan Liu ; Paydar O; Sohn H; Dutson EP; Grundfest WS; Candler RN
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3936-3939. PubMed ID: 29060758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies.
    Othman W; Lai ZA; Abril C; Barajas-Gamboa JS; Corcelles R; Kroh M; Qasaimeh MA
    Front Robot AI; 2021; 8():705662. PubMed ID: 35071332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance of a Haptic Feedback Grasper in Laparoscopic Surgery: A Randomized Pilot Comparison With Conventional Graspers in a Porcine Model.
    Alleblas CCJ; Vleugels MPH; Stommel MWJ; Nieboer TE
    Surg Innov; 2019 Oct; 26(5):573-580. PubMed ID: 31161876
    [No Abstract]   [Full Text] [Related]  

  • 25. Screen-Printed Resistive Tactile Sensor for Monitoring Tissue Interaction Forces on a Surgical Magnetic Microgripper.
    Aubeeluck DA; Forbrigger C; Taromsari SM; Chen T; Diller E; Naguib HE
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34008-34022. PubMed ID: 37403926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Encouraging and Detecting Preferential Incipient Slip for Use in Slip Prevention in Robot-Assisted Surgery.
    Waters I; Jones D; Alazmani A; Culmer P
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of Force Sensor System Based on Tri-Axial Fiber Bragg Grating with Flexure Structure.
    Shin D; Kim HU; Kulkarni A; Kim YH; Kim T
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction Force Mapping by 3-Axis Tactile Sensing With Arbitrary Angles for Tissue Hard-Inclusion Localization.
    Li T; Pan A; Ren H
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):26-35. PubMed ID: 32396067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feeling of pulsations in artificial arteries with a real time haptic feedback laparoscopic grasper: a validation study.
    Vleugels MPH; Rahimi M
    Surg Endosc; 2024 Jun; ():. PubMed ID: 38858248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Evaluation of a Balanced Compliant Laparoscopic Grasper.
    Klok JW; Postema R; Steinporsson AT; Dankelman J; Horeman T
    IEEE J Transl Eng Health Med; 2023; 11():451-459. PubMed ID: 37817822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.
    Paydar OH; Wottawa CR; Fan RE; Dutson EP; Grundfest WS; Culjat MO; Candler RN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2355-8. PubMed ID: 23366397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial tactile sensing in minimally invasive surgery - a new technical approach.
    Schostek S; Ho CN; Kalanovic D; Schurr MO
    Minim Invasive Ther Allied Technol; 2006; 15(5):296-304. PubMed ID: 17062404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A remote palpation instrument for laparoscopic surgery: design and performance.
    Ottermo MV; Stavdahl Ø; Johansen TA
    Minim Invasive Ther Allied Technol; 2009; 18(5):259-72. PubMed ID: 19711224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tactile Sensing and Control of Robotic Manipulator Integrating Fiber Bragg Grating Strain-Sensor.
    Massari L; Oddo CM; Sinibaldi E; Detry R; Bowkett J; Carpenter KC
    Front Neurorobot; 2019; 13():8. PubMed ID: 31057387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force controlled and teleoperated endoscopic grasper for minimally invasive surgery--experimental performance evaluation.
    Rosen J; Hannaford B; MacFarlane MP; Sinanan MN
    IEEE Trans Biomed Eng; 1999 Oct; 46(10):1212-21. PubMed ID: 10513126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual and tactile feedback for a direct-manipulating tactile sensor in laparoscopic palpation.
    Fukuda T; Tanaka Y; Kappers AML; Fujiwara M; Sano A
    Int J Med Robot; 2018 Apr; 14(2):. PubMed ID: 29266695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of force feedback and visual feedback in grasping tissue laparoscopically.
    Heijnsdijk EA; Pasdeloup A; van der Pijl AJ; Dankelman J; Gouma DJ
    Surg Endosc; 2004 Jun; 18(6):980-5. PubMed ID: 15108104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LAPKaans: Tool-Motion Tracking and Gripping Force-Sensing Modular Smart Laparoscopic Training System.
    Olivas-Alanis LH; Calzada-Briseño RA; Segura-Ibarra V; Vázquez EV; Diaz-Elizondo JA; Flores-Villalba E; Rodriguez CA
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.