These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35020276)

  • 41. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The MUSHA underactuated hand for robot-aided minimally invasive surgery.
    Selvaggio M; Fontanelli GA; Marrazzo VR; Bracale U; Irace A; Breglio G; Villani L; Siciliano B; Ficuciello F
    Int J Med Robot; 2019 Jun; 15(3):e1981. PubMed ID: 30588772
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Machine-Learning-Based Approach to Solve Both Contact Location and Force in Soft Material Tactile Sensors.
    Massari L; Schena E; Massaroni C; Saccomandi P; Menciassi A; Sinibaldi E; Oddo CM
    Soft Robot; 2020 Aug; 7(4):409-420. PubMed ID: 31880499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tactile feedback exceeds visual feedback to display tissue slippage in a laparoscopic grasper.
    Westebring-van der Putten EP; Lysen WW; Henssen VD; Koopmans N; Goossens RH; van den Dobbelsteen JJ; Dankelman J; Jakimowcz J
    Stud Health Technol Inform; 2009; 142():420-5. PubMed ID: 19377198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of laparoscopic grasper force transmission ratio on grasp control.
    Westebring-van der Putten EP; van den Dobbelsteen JJ; Goossens RH; Jakimowicz JJ; Dankelman J
    Surg Endosc; 2009 Apr; 23(4):818-24. PubMed ID: 18814010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Artificial tactile feedback can significantly improve tissue examination through remote palpation.
    Schostek S; Binser MJ; Rieber F; Ho CN; Schurr MO; Buess GF
    Surg Endosc; 2010 Sep; 24(9):2299-307. PubMed ID: 20354870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SuP-Ring: A pneumatic tactile display with substitutional representation of contact force components using normal indentation.
    Ly HH; Tanaka Y; Fujiwara M
    Int J Med Robot; 2021 Dec; 17(6):e2325. PubMed ID: 34425041
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tactile feedback is present during minimally invasive surgery.
    Bholat OS; Haluck RS; Murray WB; Gorman PJ; Krummel TM
    J Am Coll Surg; 1999 Oct; 189(4):349-55. PubMed ID: 10509459
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Force model for laparoscopic graspers: implications for virtual simulator design.
    Susmitha Wils K; Devasahayam SR; Manivannan M; Mathew G
    Minim Invasive Ther Allied Technol; 2017 Apr; 26(2):97-103. PubMed ID: 27841700
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An integrated force-position tactile sensor for improving diagnostic and therapeutic endoscopic surgery.
    Dargahi J; Najarian S
    Biomed Mater Eng; 2004; 14(2):151-66. PubMed ID: 15156106
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Objective laparoscopic skills assessments of surgical residents using Hidden Markov Models based on haptic information and tool/tissue interactions.
    Rosen J; Solazzo M; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2001; 81():417-23. PubMed ID: 11317782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A perspective on the role and utility of haptic feedback in laparoscopic skills training.
    Singapogu R; Burg T; Burg KJ; Smith DE; Eckenrode AH
    Crit Rev Biomed Eng; 2014; 42(3-4):293-318. PubMed ID: 25597241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Blood vessel detection, localization and estimation using a smart laparoscopic grasper: a Monte Carlo study.
    Chaturvedi A; Shukair SA; Le Rolland P; Vijayvergia M; Gunn JW; Subramanian H
    Biomed Opt Express; 2018 May; 9(5):2027-2040. PubMed ID: 29760967
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Haptic Feedback, Force Feedback, and Force-Sensing in Simulation Training for Laparoscopy: A Systematic Overview.
    Overtoom EM; Horeman T; Jansen FW; Dankelman J; Schreuder HWR
    J Surg Educ; 2019; 76(1):242-261. PubMed ID: 30082239
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature Compensation of Fiber Bragg Grating Sensors in Smart Strand.
    Jeon SJ; Park SY; Kim ST
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Soft Multi-Axis High Force Range Magnetic Tactile Sensor for Force Feedback in Robotic Surgical Systems.
    Rehan M; Saleem MM; Tiwana MI; Shakoor RI; Cheung R
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An autoclavable wireless palpation instrument for minimally invasive surgery.
    Naidu AS; Escoto A; Fahmy O; Patel RV; Naish MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6489-6492. PubMed ID: 28269733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stochastic resonance enhanced tactile feedback in laparoscopic surgery.
    Sawada H; Egi H; Hattori M; Suzuki T; Mukai S; Kurita Y; Yasui W; Ohdan H
    Surg Endosc; 2015 Dec; 29(12):3811-8. PubMed ID: 25740643
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.