BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35020457)

  • 1. Nanoscale dynamics of actin filaments in the red blood cell membrane skeleton.
    Nowak RB; Alimohamadi H; Pestonjamasp K; Rangamani P; Fowler VM
    Mol Biol Cell; 2022 Mar; 33(3):ar28. PubMed ID: 35020457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.
    Smith AS; Nowak RB; Zhou S; Giannetto M; Gokhin DS; Papoin J; Ghiran IC; Blanc L; Wan J; Fowler VM
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4377-E4385. PubMed ID: 29610350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The human erythrocyte plasma membrane: a Rosetta Stone for decoding membrane-cytoskeleton structure.
    Fowler VM
    Curr Top Membr; 2013; 72():39-88. PubMed ID: 24210427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane.
    Gokhin DS; Nowak RB; Khoory JA; Piedra Ade L; Ghiran IC; Fowler VM
    Mol Biol Cell; 2015 May; 26(9):1699-710. PubMed ID: 25717184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feisty filaments: actin dynamics in the red blood cell membrane skeleton.
    Gokhin DS; Fowler VM
    Curr Opin Hematol; 2016 May; 23(3):206-14. PubMed ID: 27055045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tropomodulin 1-null mice have a mild spherocytic elliptocytosis with appearance of tropomodulin 3 in red blood cells and disruption of the membrane skeleton.
    Moyer JD; Nowak RB; Kim NE; Larkin SK; Peters LL; Hartwig J; Kuypers FA; Fowler VM
    Blood; 2010 Oct; 116(14):2590-9. PubMed ID: 20585041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of membrane skeleton organization in red blood cells.
    Li N; Chen S; Xu K; He MT; Dong MQ; Zhang QC; Gao N
    Cell; 2023 Apr; 186(9):1912-1929.e18. PubMed ID: 37044097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton.
    Kalfa TA; Pushkaran S; Mohandas N; Hartwig JH; Fowler VM; Johnson JF; Joiner CH; Williams DA; Zheng Y
    Blood; 2006 Dec; 108(12):3637-45. PubMed ID: 16882712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of spectrin-actin assembly by erythrocyte adducin.
    Gardner K; Bennett V
    Nature; 1987 Jul 23-29; 328(6128):359-62. PubMed ID: 3600811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat-induced alterations in monkey erythrocyte membrane phospholipid organization and skeletal protein structure and interactions.
    Kumar A; Gudi SR; Gokhale SM; Bhakuni V; Gupta CM
    Biochim Biophys Acta; 1990 Dec; 1030(2):269-78. PubMed ID: 2261489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.
    Picart C; Dalhaimer P; Discher DE
    Biophys J; 2000 Dec; 79(6):2987-3000. PubMed ID: 11106606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin--membrane interactions: association of G-actin with the red cell membrane.
    Cohen CM; Jackson PL; Branton D
    J Supramol Struct; 1978; 9(1):113-24. PubMed ID: 732309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythroid differentiation in mouse erythroleukemia cells depends on Tmod3-mediated regulation of actin filament assembly into the erythroblast membrane skeleton.
    Ghosh A; Coffin M; West R; Fowler VM
    FASEB J; 2022 Mar; 36(3):e22220. PubMed ID: 35195928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of radiographic contrast media (Iodixanol, Iopromide) on the spectrin/actin-network of the membranous cytoskeleton of erythrocytes.
    Franke RP; Scharnweber T; Fuhrmann R; Mrowietz C; Jung F
    Clin Hemorheol Microcirc; 2013 Jan; 54(3):273-85. PubMed ID: 23666115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization.
    Kabaso D; Shlomovitz R; Auth T; Lew VL; Gov NS
    Biophys J; 2010 Aug; 99(3):808-16. PubMed ID: 20682258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrin-dependent and -independent association of F-actin with the erythrocyte membrane.
    Cohen CM; Foley SF
    J Cell Biol; 1980 Aug; 86(2):694-8. PubMed ID: 6893203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An actomyosin contractile mechanism for erythrocyte shape transformations.
    Fowler VM
    J Cell Biochem; 1986; 31(1):1-9. PubMed ID: 3722275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitination of erythrocyte spectrin regulates the dissociation of the spectrin-adducin-f-actin ternary complex in vitro.
    Mishra R; Goodman SR
    Cell Mol Biol (Noisy-le-grand); 2004 Feb; 50(1):75-80. PubMed ID: 15040430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic morphology and cytoskeletal protein changes during spontaneous inside-out vesiculation of red blood cell membranes.
    Tiffert T; Lew VL
    Pflugers Arch; 2014 Dec; 466(12):2279-88. PubMed ID: 24615169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.