BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 35020807)

  • 21. ManyFold: an efficient and flexible library for training and validating protein folding models.
    Villegas-Morcillo A; Robinson L; Flajolet A; Barrett TD
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function.
    Villegas-Morcillo A; Makrodimitris S; van Ham RCHJ; Gomez AM; Sanchez V; Reinders MJT
    Bioinformatics; 2021 Apr; 37(2):162-170. PubMed ID: 32797179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LMCrot: an enhanced protein crotonylation site predictor by leveraging an interpretable window-level embedding from a transformer-based protein language model.
    Pratyush P; Bahmani S; Pokharel S; Ismail HD; Kc DB
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TripletProt: Deep Representation Learning of Proteins Based On Siamese Networks.
    Nourani E; Asgari E; McHardy AC; Mofrad MRK
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3744-3753. PubMed ID: 34460382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BioVAE: a pre-trained latent variable language model for biomedical text mining.
    Trieu HL; Miwa M; Ananiadou S
    Bioinformatics; 2022 Jan; 38(3):872-874. PubMed ID: 34636886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. THPLM: a sequence-based deep learning framework for protein stability changes prediction upon point variations using pretrained protein language model.
    Gong J; Jiang L; Chen Y; Zhang Y; Li X; Ma Z; Fu Z; He F; Sun P; Ren Z; Tian M
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37874953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BioBERT and Similar Approaches for Relation Extraction.
    Bhasuran B
    Methods Mol Biol; 2022; 2496():221-235. PubMed ID: 35713867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MolLM: a unified language model for integrating biomedical text with 2D and 3D molecular representations.
    Tang X; Tran A; Tan J; Gerstein MB
    Bioinformatics; 2024 Jun; 40(Supplement_1):i357-i368. PubMed ID: 38940177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks.
    Sureyya Rifaioglu A; Doğan T; Jesus Martin M; Cetin-Atalay R; Atalay V
    Sci Rep; 2019 May; 9(1):7344. PubMed ID: 31089211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Depression Risk Prediction for Chinese Microblogs via Deep-Learning Methods: Content Analysis.
    Wang X; Chen S; Li T; Li W; Zhou Y; Zheng J; Chen Q; Yan J; Tang B
    JMIR Med Inform; 2020 Jul; 8(7):e17958. PubMed ID: 32723719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information.
    Le NQK; Ho QT; Nguyen TT; Ou YY
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33539511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TALE: Transformer-based protein function Annotation with joint sequence-Label Embedding.
    Cao Y; Shen Y
    Bioinformatics; 2021 Sep; 37(18):2825-2833. PubMed ID: 33755048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepPhos: prediction of protein phosphorylation sites with deep learning.
    Luo F; Wang M; Liu Y; Zhao XM; Li A
    Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MolPROP: Molecular Property prediction with multimodal language and graph fusion.
    Rollins ZA; Cheng AC; Metwally E
    J Cheminform; 2024 May; 16(1):56. PubMed ID: 38778388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework.
    Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H
    J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinically relevant pretraining is all you need.
    Bear Don't Walk Iv OJ; Sun T; Perotte A; Elhadad N
    J Am Med Inform Assoc; 2021 Aug; 28(9):1970-1976. PubMed ID: 34151966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.
    Agarwal A; Chen L
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.