These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 35020807)

  • 41. Transformer-based unsupervised contrastive learning for histopathological image classification.
    Wang X; Yang S; Zhang J; Wang M; Zhang J; Yang W; Huang J; Han X
    Med Image Anal; 2022 Oct; 81():102559. PubMed ID: 35952419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep learning of protein sequence design of protein-protein interactions.
    Syrlybaeva R; Strauch EM
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36377772
    [TBL] [Abstract][Full Text] [Related]  

  • 43. LM-GVP: an extensible sequence and structure informed deep learning framework for protein property prediction.
    Wang Z; Combs SA; Brand R; Calvo MR; Xu P; Price G; Golovach N; Salawu EO; Wise CJ; Ponnapalli SP; Clark PM
    Sci Rep; 2022 Apr; 12(1):6832. PubMed ID: 35477726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LMPhosSite: A Deep Learning-Based Approach for General Protein Phosphorylation Site Prediction Using Embeddings from the Local Window Sequence and Pretrained Protein Language Model.
    Pakhrin SC; Pokharel S; Pratyush P; Chaudhari M; Ismail HD; Kc DB
    J Proteome Res; 2023 Aug; 22(8):2548-2557. PubMed ID: 37459437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.
    Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR
    J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FP2VEC: a new molecular featurizer for learning molecular properties.
    Jeon W; Kim D
    Bioinformatics; 2019 Dec; 35(23):4979-4985. PubMed ID: 31070725
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards Transfer Learning Techniques-BERT, DistilBERT, BERTimbau, and DistilBERTimbau for Automatic Text Classification from Different Languages: A Case Study.
    Silva Barbon R; Akabane AT
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. miRe2e: a full end-to-end deep model based on transformers for prediction of pre-miRNAs.
    Raad J; Bugnon LA; Milone DH; Stegmayer G
    Bioinformatics; 2022 Feb; 38(5):1191-1197. PubMed ID: 34875006
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploiting pretrained biochemical language models for targeted drug design.
    Uludoğan G; Ozkirimli E; Ulgen KO; Karalı N; Özgür A
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii155-ii161. PubMed ID: 36124801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unified Deep Learning Model for Multitask Reaction Predictions with Explanation.
    Lu J; Zhang Y
    J Chem Inf Model; 2022 Mar; 62(6):1376-1387. PubMed ID: 35266390
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DeepREAL: a deep learning powered multi-scale modeling framework for predicting out-of-distribution ligand-induced GPCR activity.
    Cai T; Abbu KA; Liu Y; Xie L
    Bioinformatics; 2022 Apr; 38(9):2561-2570. PubMed ID: 35274689
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning.
    Elnaggar A; Heinzinger M; Dallago C; Rehawi G; Wang Y; Jones L; Gibbs T; Feher T; Angerer C; Steinegger M; Bhowmik D; Rost B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7112-7127. PubMed ID: 34232869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Collectively encoding protein properties enriches protein language models.
    An J; Weng X
    BMC Bioinformatics; 2022 Nov; 23(1):467. PubMed ID: 36348281
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Understanding spatial language in radiology: Representation framework, annotation, and spatial relation extraction from chest X-ray reports using deep learning.
    Datta S; Si Y; Rodriguez L; Shooshan SE; Demner-Fushman D; Roberts K
    J Biomed Inform; 2020 Aug; 108():103473. PubMed ID: 32562898
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein-protein interaction site prediction through combining local and global features with deep neural networks.
    Zeng M; Zhang F; Wu FX; Li Y; Wang J; Li M
    Bioinformatics; 2020 Feb; 36(4):1114-1120. PubMed ID: 31593229
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein language models can capture protein quaternary state.
    Avraham O; Tsaban T; Ben-Aharon Z; Tsaban L; Schueler-Furman O
    BMC Bioinformatics; 2023 Nov; 24(1):433. PubMed ID: 37964216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transformers-sklearn: a toolkit for medical language understanding with transformer-based models.
    Yang F; Wang X; Ma H; Li J
    BMC Med Inform Decis Mak; 2021 Jul; 21(Suppl 2):90. PubMed ID: 34330244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Multimodal Protein Representation Framework for Quantifying Transferability Across Biochemical Downstream Tasks.
    Hu F; Hu Y; Zhang W; Huang H; Pan Y; Yin P
    Adv Sci (Weinh); 2023 Aug; 10(22):e2301223. PubMed ID: 37249398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A BERT-based pretraining model for extracting molecular structural information from a SMILES sequence.
    Zheng X; Tomiura Y
    J Cheminform; 2024 Jun; 16(1):71. PubMed ID: 38898528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.