These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35020813)

  • 1. Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes.
    Xue Y; Kossar AP; Abramov A; Frasca A; Sun M; Zyablitskaya M; Paik D; Kalfa D; Della Barbera M; Thiene G; Kozaki S; Kawashima T; Gorman JH; Gorman RC; Gillespie MJ; Carreon CK; Sanders SP; Levy RJ; Ferrari G
    Cardiovasc Res; 2023 Mar; 119(1):302-315. PubMed ID: 35020813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification.
    Abramov A; Xue Y; Zakharchenko A; Kurade M; Soni RK; Levy RJ; Ferrari G
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2219054120. PubMed ID: 36574676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of advanced glycation end product formation and serum protein infiltration in bioprosthetic heart valve leaflets: Investigations of anti-glycation agents and anticalcification interactions with ethanol pretreatment.
    Zakharchenko A; Rock CA; Thomas TE; Keeney S; Hall EJ; Takano H; Krieger AM; Ferrari G; Levy RJ
    Biomaterials; 2022 Oct; 289():121782. PubMed ID: 36099713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response.
    Guo G; Jin L; Jin W; Chen L; Lei Y; Wang Y
    Acta Biomater; 2018 Dec; 82():44-55. PubMed ID: 30326277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly-2-methyl-2-oxazoline-modified bioprosthetic heart valve leaflets have enhanced biocompatibility and resist structural degeneration.
    Zakharchenko A; Xue Y; Keeney S; Rock CA; Alferiev IS; Stachelek SJ; Takano H; Thomas T; Nagaswami C; Krieger AM; Chorny M; Ferrari G; Levy RJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35131859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model studies of advanced glycation end product modification of heterograft biomaterials: The effects of in vitro glucose, glyoxal, and serum albumin on collagen structure and mechanical properties.
    Rock CA; Keeney S; Zakharchenko A; Takano H; Spiegel DA; Krieger AM; Ferrari G; Levy RJ
    Acta Biomater; 2021 Mar; 123():275-285. PubMed ID: 33444798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-crosslinked bioprosthetic heart valves prepared by glutaraldehyde crosslinked pericardium and poly-2-hydroxyethyl methacrylate exhibited improved antithrombogenicity and anticalcification properties.
    Huang X; Zheng C; Ding K; Zhang S; Lei Y; Wei Q; Yang L; Wang Y
    Acta Biomater; 2022 Dec; 154():244-258. PubMed ID: 36306983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile modification strategy for functional non-glutaraldehyde cross-linked bioprosthetic heart valves with enhanced anticoagulant, anticalcification and endothelialization properties.
    Yu T; Pu H; Chen X; Kong Q; Chen C; Li G; Jiang Q; Wang Y
    Acta Biomater; 2023 Apr; 160():45-58. PubMed ID: 36764592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcification and Oxidative Modifications Are Associated With Progressive Bioprosthetic Heart Valve Dysfunction.
    Lee S; Levy RJ; Christian AJ; Hazen SL; Frick NE; Lai EK; Grau JB; Bavaria JE; Ferrari G
    J Am Heart Assoc; 2017 May; 6(5):. PubMed ID: 28483776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical equivalency of wild type and galactose α 1,3 galactose free porcine pericardium; a new source material for bioprosthetic heart valves.
    McGregor C; Byrne G; Rahmani B; Chisari E; Kyriakopoulou K; Burriesci G
    Acta Biomater; 2016 Sep; 41():204-209. PubMed ID: 27268480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-crosslinking with improved antithrombogenicity and cytocompatibility.
    Ding K; Zheng C; Huang X; Zhang S; Li M; Lei Y; Wang Y
    Acta Biomater; 2022 May; 144():279-291. PubMed ID: 35365404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A universal strategy for the construction of polymer brush hybrid non-glutaraldehyde heart valves with robust anti-biological contamination performance and improved endothelialization potential.
    Yu T; Zheng C; Chen X; Pu H; Li G; Jiang Q; Wang Y; Guo Y
    Acta Biomater; 2023 Apr; 160():87-97. PubMed ID: 36812953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degeneration of Bioprosthetic Heart Valves: Update 2020.
    Kostyunin AE; Yuzhalin AE; Rezvova MA; Ovcharenko EA; Glushkova TV; Kutikhin AG
    J Am Heart Assoc; 2020 Oct; 9(19):e018506. PubMed ID: 32954917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncalcific Mechanisms of Bioprosthetic Structural Valve Degeneration.
    Marro M; Kossar AP; Xue Y; Frasca A; Levy RJ; Ferrari G
    J Am Heart Assoc; 2021 Feb; 10(3):e018921. PubMed ID: 33494616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progressive calcification of bioprosthetic mitral valve observed during pregnancy resulting from in vitro fertilization: a case report.
    Liu W; Yang G
    BMC Cardiovasc Disord; 2024 Sep; 24(1):506. PubMed ID: 39304821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying Xenograft Rejection of Bioprosthetic Heart Valves.
    Manji RA; Manji JS
    Methods Mol Biol; 2020; 2110():227-243. PubMed ID: 32002912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triglycidyl amine crosslinking combined with ethanol inhibits bioprosthetic heart valve calcification.
    Connolly JM; Bakay MA; Alferiev IS; Gorman RC; Gorman JH; Kruth HS; Ashworth PE; Kutty JK; Schoen FJ; Bianco RW; Levy RJ
    Ann Thorac Surg; 2011 Sep; 92(3):858-65. PubMed ID: 21871270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH.
    Zhang R; Wang Y; Chen L; Wang R; Li C; Li X; Fang B; Ren X; Ruan M; Liu J; Xiong Q; Zhang L; Jin Y; Zhang M; Liu X; Li L; Chen Q; Pan D; Li R; Cooper DKC; Yang H; Dai Y
    Acta Biomater; 2018 May; 72():196-205. PubMed ID: 29631050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological Equivalence of GGTA-1 Glycosyltransferase Knockout and Standard Porcine Pericardial Tissue Using 90-Day Mitral Valve Implantation in Adolescent Sheep.
    McGregor C; Salmonsmith J; Burriesci G; Byrne G
    Cardiovasc Eng Technol; 2022 Jun; 13(3):363-372. PubMed ID: 34820778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synergistic strategy of dual-crosslinking and loading intelligent nanogels for enhancing anti-coagulation, pro-endothelialization and anti-calcification properties in bioprosthetic heart valves.
    Hu M; Shi S; Peng X; Pu X; Yu X
    Acta Biomater; 2023 Nov; 171():466-481. PubMed ID: 37793601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.