These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35021009)
1. Targeted Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Accompanied with Radioresistance in Breast Cancer Cells. Qi TF; Miao W; Wang Y Anal Chem; 2022 Jan; 94(3):1525-1530. PubMed ID: 35021009 [TBL] [Abstract][Full Text] [Related]
2. Targeted Quantitative Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Using Stable Isotope-Labeled Peptides. Qi TF; Liu X; Tang F; Yin J; Yu K; Wang Y Anal Chem; 2022 Sep; 94(37):12559-12564. PubMed ID: 36084281 [No Abstract] [Full Text] [Related]
3. Parallel-reaction monitoring revealed altered expression of a number of epitranscriptomic reader, writer, and eraser proteins accompanied with colorectal cancer metastasis. Qi TF; Tang F; Yin J; Miao W; Wang Y Proteomics; 2023 Feb; 23(3-4):e2200059. PubMed ID: 35443089 [TBL] [Abstract][Full Text] [Related]
4. Targeted Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Regulated by H3K36me3. Yin J; Qi TF; Li L; Wang Y Anal Chem; 2023 Jun; 95(25):9672-9679. PubMed ID: 37296074 [TBL] [Abstract][Full Text] [Related]
5. Targeted Proteomic Analysis Revealed Kinome Reprogramming during Acquisition of Radioresistance in Breast Cancer Cells. Miao W; Bade D; Wang Y J Proteome Res; 2021 May; 20(5):2830-2838. PubMed ID: 33739118 [TBL] [Abstract][Full Text] [Related]
6. Temporal Profiling of Epitranscriptomic Modulators during Osteogenic Differentiation of Human Embryonic Stem Cells. Yin J; Qi TF; Yang YY; Vera-Colón M; Zur Nieden NI; Wang Y J Proteome Res; 2023 Jul; 22(7):2179-2185. PubMed ID: 37348120 [TBL] [Abstract][Full Text] [Related]
7. Targeted Profiling of Heat Shock Proteome in Radioresistant Breast Cancer Cells. Miao W; Fan M; Huang M; Li JJ; Wang Y Chem Res Toxicol; 2019 Feb; 32(2):326-332. PubMed ID: 30596229 [TBL] [Abstract][Full Text] [Related]
8. Profiling global kinome signatures of the radioresistant MCF-7/C6 breast cancer cells using MRM-based targeted proteomics. Guo L; Xiao Y; Fan M; Li JJ; Wang Y J Proteome Res; 2015 Jan; 14(1):193-201. PubMed ID: 25341124 [TBL] [Abstract][Full Text] [Related]
9. Targeted Proteomic Analysis of Small GTPases in Radioresistant Breast Cancer Cells. Gao Z; Yang YY; Huang M; Qi TF; Wang H; Wang Y Anal Chem; 2022 Nov; 94(43):14925-14930. PubMed ID: 36264766 [TBL] [Abstract][Full Text] [Related]
10. Mass Spectrometry-Based Proteomics for Assessing Epitranscriptomic Regulations. Yang YY; Cao Z; Wang Y Mass Spectrom Rev; 2024 Oct; ():. PubMed ID: 39422510 [TBL] [Abstract][Full Text] [Related]
11. Roles of Small GTPases in Acquired Tamoxifen Resistance in MCF-7 Cells Revealed by Targeted, Quantitative Proteomic Analysis. Huang M; Wang Y Anal Chem; 2018 Dec; 90(24):14551-14560. PubMed ID: 30431262 [TBL] [Abstract][Full Text] [Related]
12. Targeted m Rauch S; Dickinson BC Methods Enzymol; 2019; 621():1-16. PubMed ID: 31128773 [TBL] [Abstract][Full Text] [Related]
13. Development and characterisation of acquired radioresistant breast cancer cell lines. Gray M; Turnbull AK; Ward C; Meehan J; Martínez-Pérez C; Bonello M; Pang LY; Langdon SP; Kunkler IH; Murray A; Argyle D Radiat Oncol; 2019 Apr; 14(1):64. PubMed ID: 30987655 [TBL] [Abstract][Full Text] [Related]
14. LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer. Zhang W; Zhong T; Chen Y J Proteomics; 2017 Jan; 152():172-180. PubMed ID: 27826076 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the Tyrosine Kinase-Regulated Proteome in Breast Cancer by Combined use of RNA interference (RNAi) and Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantitative Proteomics. Stebbing J; Zhang H; Xu Y; Grothey A; Ajuh P; Angelopoulos N; Giamas G Mol Cell Proteomics; 2015 Sep; 14(9):2479-92. PubMed ID: 26089344 [TBL] [Abstract][Full Text] [Related]
16. Use of universal stable isotope labeling by amino acids in cell culture (SILAC)-based selected reaction monitoring (SRM) approach for verification of breast cancer-related protein markers. Liu NQ; Dekker LJ; Van Duijn MM; Umar A Methods Mol Biol; 2014; 1156():307-22. PubMed ID: 24791998 [TBL] [Abstract][Full Text] [Related]
17. Molecular characterization of exosome-like vesicles from breast cancer cells. Kruger S; Abd Elmageed ZY; Hawke DH; Wörner PM; Jansen DA; Abdel-Mageed AB; Alt EU; Izadpanah R BMC Cancer; 2014 Jan; 14():44. PubMed ID: 24468161 [TBL] [Abstract][Full Text] [Related]
18. A merged method for targeted analysis of amino acids and derivatives using parallel reaction monitoring combined with untargeted profiling by HILIC-Q-Orbitrap HRMS. Zhang L; Zheng W; Li X; Wang S; Xiao M; Xiao R; Zhang D; Ke N; Cai H; Cheng J; Chen X; Gong M J Pharm Biomed Anal; 2021 Sep; 203():114208. PubMed ID: 34148019 [TBL] [Abstract][Full Text] [Related]
19. Large-Scale Analysis of Breast Cancer-Related Conformational Changes in Proteins Using SILAC-SPROX. Liu F; Meng H; Fitzgerald MC J Proteome Res; 2017 Sep; 16(9):3277-3286. PubMed ID: 28673085 [TBL] [Abstract][Full Text] [Related]
20. Proteomics Profiling of KAIMRC1 in Comparison to MDA-MB231 and MCF-7. Alghanem B; Ali R; Nehdi A; Al Zahrani H; Altolayyan A; Shaibah H; Baz O; Alhallaj A; Moresco JJ; Diedrich JK; Yates JR; Boudjelal M Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32570693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]