These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35021073)

  • 1. Predicting and interpreting large-scale mutagenesis data using analyses of protein stability and conservation.
    Høie MH; Cagiada M; Beck Frederiksen AH; Stein A; Lindorff-Larsen K
    Cell Rep; 2022 Jan; 38(2):110207. PubMed ID: 35021073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning.
    Pandurangan AP; Blundell TL
    Protein Sci; 2020 Jan; 29(1):247-257. PubMed ID: 31693276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data.
    Gray VE; Hause RJ; Luebeck J; Shendure J; Fowler DM
    Cell Syst; 2018 Jan; 6(1):116-124.e3. PubMed ID: 29226803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and sequence/structure mapping of biophysical constraints to protein variation in saturated mutational libraries and protein sequence alignments with a dedicated server.
    Abriata LA; Bovigny C; Dal Peraro M
    BMC Bioinformatics; 2016 Jun; 17(1):242. PubMed ID: 27315797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid protein stability prediction using deep learning representations.
    Blaabjerg LM; Kassem MM; Good LL; Jonsson N; Cagiada M; Johansson KE; Boomsma W; Stein A; Lindorff-Larsen K
    Elife; 2023 May; 12():. PubMed ID: 37184062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic exploration of [Formula: see text] cutoff ranges in machine learning models for protein mutation stability prediction.
    Olney R; Tuor A; Jagodzinski F; Hutchinson B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1840022. PubMed ID: 30419784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants.
    Greenblatt MS; Beaudet JG; Gump JR; Godin KS; Trombley L; Koh J; Bond JP
    Oncogene; 2003 Feb; 22(8):1150-63. PubMed ID: 12606942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based prediction of the effects of a missense variant on protein stability.
    Yang Y; Chen B; Tan G; Vihinen M; Shen B
    Amino Acids; 2013 Mar; 44(3):847-55. PubMed ID: 23064876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Origins of Loss of Protein Function by Analyzing the Effects of Thousands of Variants on Activity and Abundance.
    Cagiada M; Johansson KE; Valanciute A; Nielsen SV; Hartmann-Petersen R; Yang JJ; Fowler DM; Stein A; Lindorff-Larsen K
    Mol Biol Evol; 2021 Jul; 38(8):3235-3246. PubMed ID: 33779753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting mutant outcome by combining deep mutational scanning and machine learning.
    Sarfati H; Naftaly S; Papo N; Keasar C
    Proteins; 2022 Jan; 90(1):45-57. PubMed ID: 34293212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How good are pathogenicity predictors in detecting benign variants?
    Niroula A; Vihinen M
    PLoS Comput Biol; 2019 Feb; 15(2):e1006481. PubMed ID: 30742610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlating protein function and stability through the analysis of single amino acid substitutions.
    Bromberg Y; Rost B
    BMC Bioinformatics; 2009 Aug; 10 Suppl 8(Suppl 8):S8. PubMed ID: 19758472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reviewing Challenges of Predicting Protein Melting Temperature Change Upon Mutation Through the Full Analysis of a Highly Detailed Dataset with High-Resolution Structures.
    Louis BBV; Abriata LA
    Mol Biotechnol; 2021 Oct; 63(10):863-884. PubMed ID: 34101125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-protein transfer learning substantially improves disease variant prediction.
    Jagota M; Ye C; Albors C; Rastogi R; Koehl A; Ioannidis N; Song YS
    Genome Biol; 2023 Aug; 24(1):182. PubMed ID: 37550700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of pathogenic missense mutations using protein stability predictors.
    Gerasimavicius L; Liu X; Marsh JA
    Sci Rep; 2020 Sep; 10(1):15387. PubMed ID: 32958805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability-Large-Scale Validation of MD-Based Relative Free Energy Calculations.
    Steinbrecher T; Zhu C; Wang L; Abel R; Negron C; Pearlman D; Feyfant E; Duan J; Sherman W
    J Mol Biol; 2017 Apr; 429(7):948-963. PubMed ID: 27964946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational approaches for predicting mutant protein stability.
    Kulshreshtha S; Chaudhary V; Goswami GK; Mathur N
    J Comput Aided Mol Des; 2016 May; 30(5):401-12. PubMed ID: 27160393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpreting the molecular mechanisms of disease variants in human transmembrane proteins.
    Tiemann JKS; Zschach H; Lindorff-Larsen K; Stein A
    Biophys J; 2023 Jun; 122(11):2176-2191. PubMed ID: 36600598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.