BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 35021202)

  • 1. A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq.
    Sun X; Lin X; Li Z; Wu H
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35021202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.
    Chen L; Zhai Y; He Q; Wang W; Deng M
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data.
    Mieth B; Hockley JRF; Görnitz N; Vidovic MM; Müller KR; Gutteridge A; Ziemek D
    Sci Rep; 2019 Dec; 9(1):20353. PubMed ID: 31889137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scConsensus: combining supervised and unsupervised clustering for cell type identification in single-cell RNA sequencing data.
    Ranjan B; Schmidt F; Sun W; Park J; Honardoost MA; Tan J; Arul Rayan N; Prabhakar S
    BMC Bioinformatics; 2021 Apr; 22(1):186. PubMed ID: 33845760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of some aspects in supervised cell type identification for single-cell RNA-seq: classifier, feature selection, and reference construction.
    Ma W; Su K; Wu H
    Genome Biol; 2021 Sep; 22(1):264. PubMed ID: 34503564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scCNC: a method based on capsule network for clustering scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of single-cell RNAseq labelling algorithms using cancer datasets.
    Christensen E; Luo P; Turinsky A; Husić M; Mahalanabis A; Naidas A; Diaz-Mejia JJ; Brudno M; Pugh T; Ramani A; Shooshtari P
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level.
    Liu Y; Wei G; Li C; Shen LC; Gasser RB; Song J; Chen D; Yu DJ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids.
    Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scSSA: A clustering method for single cell RNA-seq data based on semi-supervised autoencoder.
    Zhao JP; Hou TS; Su Y; Zheng CH
    Methods; 2022 Dec; 208():66-74. PubMed ID: 36377123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CTISL: a dynamic stacking multi-class classification approach for identifying cell types from single-cell RNA-seq data.
    Wang X; Chai Z; Li S; Liu Y; Li C; Jiang Y; Liu Q
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond benchmarking and towards predictive models of dataset-specific single-cell RNA-seq pipeline performance.
    Fang C; Selega A; Campbell KR
    Genome Biol; 2024 Jun; 25(1):159. PubMed ID: 38886757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data.
    Huang Q; Liu Y; Du Y; Garmire LX
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):267-281. PubMed ID: 33359678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-Cluster Identification through Semi-Supervised Optimization of Rare-Cell Silhouettes (SCISSORS) in single-cell RNA-sequencing.
    Leary JR; Xu Y; Morrison AB; Jin C; Shen EC; Kuhlers PC; Su Y; Rashid NU; Yeh JJ; Peng XL
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.