These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35021316)

  • 1. Computed Tomography Features of Lung Structure Have Utility for Differentiating Malignant and Benign Pulmonary Nodules.
    Uthoff JM; Mott SL; Larson J; Neslund-Dudas CM; Schwartz AG; Sieren JC;
    Chronic Obstr Pulm Dis; 2022 Apr; 9(2):154-164. PubMed ID: 35021316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram.
    Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F
    Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative CT analysis of lung parenchyma to improve malignancy risk estimation in incidental pulmonary nodules.
    Peters AA; Weinheimer O; von Stackelberg O; Kroschke J; Piskorski L; Debic M; Schlamp K; Welzel L; Pohl M; Christe A; Ebner L; Kauczor HU; Heußel CP; Wielpütz MO
    Eur Radiol; 2023 Jun; 33(6):3908-3917. PubMed ID: 36538071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment and verification of a prediction model based on clinical characteristics and computed tomography radiomics parameters for distinguishing benign and malignant pulmonary nodules.
    Hou X; Wu M; Chen J; Zhang R; Wang Y; Zhang S; Yuan Z; Feng J; Xu L
    J Thorac Dis; 2024 Mar; 16(3):1984-1995. PubMed ID: 38617763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT.
    Uthoff J; Stephens MJ; Newell JD; Hoffman EA; Larson J; Koehn N; De Stefano FA; Lusk CM; Wenzlaff AS; Watza D; Neslund-Dudas C; Carr LL; Lynch DA; Schwartz AG; Sieren JC
    Med Phys; 2019 Jul; 46(7):3207-3216. PubMed ID: 31087332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing a multi-institutional nomogram for assessing lung cancer risk in patients with 5-30 mm pulmonary nodules: a retrospective analysis.
    Jiang Y; Deng T; Huang Y; Ren B; He L; Pang M; Jiang L
    PeerJ; 2023; 11():e16539. PubMed ID: 38107565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a combined radiomics and CT feature-based model for differentiating malignant from benign subcentimeter solid pulmonary nodules.
    Liu J; Qi L; Wang Y; Li F; Chen J; Cui S; Cheng S; Zhou Z; Li L; Wang J
    Eur Radiol Exp; 2024 Jan; 8(1):8. PubMed ID: 38228868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches.
    Warkentin MT; Al-Sawaihey H; Lam S; Liu G; Diergaarde B; Yuan JM; Wilson DO; Atkar-Khattra S; Grant B; Brhane Y; Khodayari-Moez E; Murison KR; Tammemagi MC; Campbell KR; Hung RJ
    Thorax; 2024 Mar; 79(4):307-315. PubMed ID: 38195644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance radiomic feature performance in pulmonary nodule classification and impact of segmentation variability on radiomics.
    Koo CW; Kline TL; Yoon JH; Vercnocke AJ; Johnson MP; Suman G; Lu A; Larson NB
    Br J Radiol; 2022 Dec; 95(1140):20220230. PubMed ID: 36367095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT.
    Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A
    Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis.
    Garau N; Paganelli C; Summers P; Choi W; Alam S; Lu W; Fanciullo C; Bellomi M; Baroni G; Rampinelli C
    Med Phys; 2020 Sep; 47(9):4125-4136. PubMed ID: 32488865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomics nomogram analysis of T2-fBLADE-TSE in pulmonary nodules evaluation.
    Yang S; Wang Y; Shi Y; Yang G; Yan Q; Shen J; Wang Q; Zhang H; Yang S; Shan F; Zhang Z
    Magn Reson Imaging; 2022 Jan; 85():80-86. PubMed ID: 34666158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D gray density coding feature for benign-malignant pulmonary nodule classification on chest CT.
    Zheng B; Yang D; Zhu Y; Liu Y; Hu J; Bai C
    Med Phys; 2021 Dec; 48(12):7826-7836. PubMed ID: 34655238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined non-enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub-centimeter pulmonary solid nodules.
    Lin RY; Zheng YN; Lv FJ; Fu BJ; Li WJ; Liang ZR; Chu ZG
    Med Phys; 2023 May; 50(5):2835-2843. PubMed ID: 36810703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early Diagnosis of High-Risk Chronic Obstructive Pulmonary Disease Based on Quantitative High-Resolution Computed Tomography Measurements.
    Zhang W; Zhao Y; Tian Y; Liang X; Piao C
    Int J Chron Obstruct Pulmon Dis; 2023; 18():3099-3114. PubMed ID: 38162987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing COPD classification using combined quantitative computed tomography and texture-based radiomics: a CanCOLD cohort study.
    Makimoto K; Hogg JC; Bourbeau J; Tan WC; Kirby M;
    ERJ Open Res; 2024 Jul; 10(4):. PubMed ID: 39040582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer.
    Choi W; Oh JH; Riyahi S; Liu CJ; Jiang F; Chen W; White C; Rimner A; Mechalakos JG; Deasy JO; Lu W
    Med Phys; 2018 Apr; 45(4):1537-1549. PubMed ID: 29457229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography.
    Wu H; Sun T; Wang J; Li X; Wang W; Huo D; Lv P; He W; Wang K; Guo X
    J Digit Imaging; 2013 Aug; 26(4):797-802. PubMed ID: 23325122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Value of Combined Detection of Cytokines and Tumor Markers in the 
Differential Diagnosis of Benign and Malignant Solitary Pulmonary Nodules].
    Shi J; Liu X; Ming Z; Li W; Lv X; Yang X; Wang Y; Zhang M; Yang S
    Zhongguo Fei Ai Za Zhi; 2021 Jun; 24(6):426-433. PubMed ID: 34157802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-classification model incorporating radiomics and clinic-radiological features for predicting invasiveness and differentiation of pulmonary adenocarcinoma nodules.
    Sun H; Zhang C; Ouyang A; Dai Z; Song P; Yao J
    Biomed Eng Online; 2023 Nov; 22(1):112. PubMed ID: 38037082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.