These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35021360)

  • 1. Computer-Aided Design of Nanoceria Structures as Enzyme Mimetic Agents: The Role of Bodily Electrolytes on Maximizing Their Activity.
    Molinari M; Symington AR; Sayle DC; Sakthivel TS; Seal S; Parker SC
    ACS Appl Bio Mater; 2019 Mar; 2(3):1098-1106. PubMed ID: 35021360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes.
    Wang Z; Shen X; Gao X; Zhao Y
    Nanoscale; 2019 Jul; 11(28):13289-13299. PubMed ID: 31287483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of DNA on the oxidase activity of nanoceria with different morphologies.
    Yang D; Fa M; Gao L; Zhao R; Luo Y; Yao X
    Nanotechnology; 2018 Sep; 29(38):385101. PubMed ID: 29949520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the {111}/{110} Surface Ratio of Cuboidal Ceria Nanoparticles.
    Castanet U; Feral-Martin C; Demourgues A; Neale RL; Sayle DC; Caddeo F; Flitcroft JM; Caygill R; Pointon BJ; Molinari M; Majimel J
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11384-11390. PubMed ID: 30843391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Will the Bacteria Survive in the CeO
    Zhu W; Wang L; Li Q; Jiao L; Yu X; Gao X; Qiu H; Zhang Z; Bing W
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34205408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues.
    Lord MS; Berret JF; Singh S; Vinu A; Karakoti AS
    Small; 2021 Dec; 17(51):e2102342. PubMed ID: 34363314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies.
    Zhao Y; Wang Y; Mathur A; Wang Y; Maheshwari V; Su H; Liu J
    Nanoscale; 2019 Oct; 11(38):17841-17850. PubMed ID: 31552980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of cerium redox state in the SOD mimetic activity of nanoceria.
    Heckert EG; Karakoti AS; Seal S; Self WT
    Biomaterials; 2008 Jun; 29(18):2705-9. PubMed ID: 18395249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environment-mediated structure, surface redox activity and reactivity of ceria nanoparticles.
    Sayle TX; Molinari M; Das S; Bhatta UM; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2013 Jul; 5(13):6063-73. PubMed ID: 23719690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoceria: an innovative strategy for cancer treatment.
    Tang JLY; Moonshi SS; Ta HT
    Cell Mol Life Sci; 2023 Jan; 80(2):46. PubMed ID: 36656411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity.
    Shah F; Yadav N; Singh S
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111478. PubMed ID: 33272726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promotion and Inhibition of the Oxidase-Mimicking Activity of Nanoceria by Phosphate, Polyphosphate, and DNA.
    Zhao Y; Li H; Lopez A; Su H; Liu J
    Chembiochem; 2020 Aug; 21(15):2178-2186. PubMed ID: 32181558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluoride-assisted detection of glutathione by surface Ce
    Patel V; Jose L; Philippot G; Aymonier C; Inerbaev T; McCourt LR; Ruppert MG; Qi D; Li W; Qu J; Zheng R; Cairney J; Yi J; Vinu A; Karakoti AS
    J Mater Chem B; 2022 Dec; 10(47):9855-9868. PubMed ID: 36415972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the Contributions of Surface Oxygen Vacancies on the Promoted Photocatalytic Property of Nanoceria.
    Lan Y; Xia X; Li J; Mao X; Chen C; Ning D; Chu Z; Zhang J; Liu F
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles.
    Bhushan B; Gopinath P
    J Mater Chem B; 2015 Jun; 3(24):4843-4852. PubMed ID: 32262673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillations of Cerium Oxidation State Driven by Oxygen Diffusion in Colloidal Nanoceria (CeO
    Malyukin Y; Klochkov V; Maksimchuk P; Seminko V; Spivak N
    Nanoscale Res Lett; 2017 Oct; 12(1):566. PubMed ID: 29030776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ophthalmic Applications of Cerium Oxide Nanoparticles.
    Maccarone R; Tisi A; Passacantando M; Ciancaglini M
    J Ocul Pharmacol Ther; 2020; 36(6):376-383. PubMed ID: 31891528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protecting Ceria Nanocatalysts-The Role of Sacrificial Barriers.
    Morgan LM; Molinari M; Corrias A; Sayle DC
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32510-32515. PubMed ID: 30160106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanozyme Catalytic Turnover and Self-Limited Reactions.
    Zandieh M; Liu J
    ACS Nano; 2021 Oct; 15(10):15645-15655. PubMed ID: 34623130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles.
    Matter MT; Furer LA; Starsich FHL; Fortunato G; Pratsinis SE; Herrmann IK
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2830-2839. PubMed ID: 30571079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.