These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35021375)

  • 1. One-Dimensional Assemblies of a DNA Tetrahedron: Manipulations on the Structural Conformation and Single-Molecule Behaviors.
    Wang L; Zhu Z; Li B; Shao F
    ACS Appl Bio Mater; 2019 Mar; 2(3):1278-1285. PubMed ID: 35021375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Computational Analysis of DNA Origami Assemblies at Near-Atomic Resolution.
    Lee JY; Lee JG; Yun G; Lee C; Kim YJ; Kim KS; Kim TH; Kim DN
    ACS Nano; 2021 Jan; 15(1):1002-1015. PubMed ID: 33410664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of circular assemblies with DNA tetrahedrons: from static structures to a dynamic rotary motor.
    Wang L; Meng Z; Martina F; Shao H; Shao F
    Nucleic Acids Res; 2017 Dec; 45(21):12090-12099. PubMed ID: 29126166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent tethering of protruding arms for addressable DNA nanostructures.
    Saccà B; Niemeyer CM
    Small; 2011 Oct; 7(20):2887-98. PubMed ID: 21901826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule AFM characterization of individual chemically tagged DNA tetrahedra.
    Leitner M; Mitchell N; Kastner M; Schlapak R; Gruber HJ; Hinterdorfer P; Howorka S; Ebner A
    ACS Nano; 2011 Sep; 5(9):7048-54. PubMed ID: 21797233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery.
    Xie N; Liu S; Yang X; He X; Huang J; Wang K
    Analyst; 2017 Sep; 142(18):3322-3332. PubMed ID: 28835943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors.
    Willner EM; Kamada Y; Suzuki Y; Emura T; Hidaka K; Dietz H; Sugiyama H; Endo M
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15324-15328. PubMed ID: 29044955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-DNA kissing complexes as a new tool for the assembly of DNA nanostructures.
    Barth A; Kobbe D; Focke M
    Nucleic Acids Res; 2016 Feb; 44(4):1502-13. PubMed ID: 26773051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic nanoparticle assemblies.
    Wang L; Xu L; Kuang H; Xu C; Kotov NA
    Acc Chem Res; 2012 Nov; 45(11):1916-26. PubMed ID: 22449243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base-Sequence-Independent Efficient Redox Switching of Self-Assembled DNA Nanocages.
    Wang B; Song L; Jin B; Deng N; Wu X; He J; Deng Z; Li Y
    Chembiochem; 2019 Nov; 20(21):2743-2746. PubMed ID: 31100196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule chemical reactions on DNA origami.
    Voigt NV; Tørring T; Rotaru A; Jacobsen MF; Ravnsbaek JB; Subramani R; Mamdouh W; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    Nat Nanotechnol; 2010 Mar; 5(3):200-3. PubMed ID: 20190747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanics of self-assembled DNA building blocks.
    Penth M; Schellnhuber K; Bennewitz R; Blass J
    Nanoscale; 2021 May; 13(20):9371-9380. PubMed ID: 33999986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations.
    Shi Z; Castro CE; Arya G
    ACS Nano; 2017 May; 11(5):4617-4630. PubMed ID: 28423273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of DNA rings from scaffold-free DNA tiles.
    Yang Y; Zhao Z; Zhang F; Nangreave J; Liu Y; Yan H
    Nano Lett; 2013 Apr; 13(4):1862-6. PubMed ID: 23530617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mirror image DNA nanostructures for chiral supramolecular assemblies.
    Lin C; Ke Y; Li Z; Wang JH; Liu Y; Yan H
    Nano Lett; 2009 Jan; 9(1):433-6. PubMed ID: 19063615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic Transport of Single-Stranded DNA through a Two Dimensional Nanopore Patterned on an In-Plane Heterostructure.
    Luan B; Kuroda MA
    ACS Nano; 2020 Oct; 14(10):13137-13145. PubMed ID: 32902252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.