These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35021395)

  • 21. 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration.
    Fu Y; Zhang J; Lin H; Mo A
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111367. PubMed ID: 33254986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable Water-Based Polyurethane Shape Memory Elastomers for Bone Tissue Engineering.
    Wang YJ; Jeng US; Hsu SH
    ACS Biomater Sci Eng; 2018 Apr; 4(4):1397-1406. PubMed ID: 33418669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications.
    Yang X; Han Z; Jia C; Wang T; Wang X; Hu F; Zhang H; Zhao J; Zhang X
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.
    Rajesh A; Mangamma G; Sairam TN; Subramanian S; Kalavathi S; Kamruddin M; Dash S
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():203-210. PubMed ID: 28482518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradable shape memory polymers functionalized with anti-biofouling interpenetrating polymer networks.
    Dueramae I; Nishida M; Nakaji-Hirabayashi T; Matsumura K; Kitano H
    J Mater Chem B; 2016 Aug; 4(32):5394-5404. PubMed ID: 32263463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S; Çakmak AS; Gümüşderelioğlu M
    Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustainable Shape-Memory Polyurethane from Abietic Acid: Superior Mechanical Properties and Shape Recovery with Tunable Transition Temperatures.
    Gnanasekar P; Chen J; Goswami SR; Chen H; Yan N
    ChemSusChem; 2020 Nov; 13(21):5749-5761. PubMed ID: 32882105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust Effects of Graphene Oxide on Polyurethane/Tourmaline Nanocomposite Fiber.
    Zhang Y; Hu J
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33374588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement in Mechanical and Shape Memory Properties for Liquid Crystalline Polyurethane Strengthened by Graphene Oxide.
    Li Y; Lian H; Hu Y; Chang W; Cui X; Liu Y
    Polymers (Basel); 2016 Jul; 8(7):. PubMed ID: 30974543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.
    Alothman OY; Fouad H; Al-Zahrani SM; Eshra A; Al Rez MF; Ansari SG
    Biomed Eng Online; 2014 Aug; 13():125. PubMed ID: 25168723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical and Shape Recovery Characterization of MWCNTs/HNTs-Reinforced Thermal-Responsive Shape-Memory Polymer Nanocomposites.
    Namathoti S; Vakkalagadda MRK
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporating silica-coated graphene in bioceramic nanocomposites to simultaneously enhance mechanical and biological performance.
    Li Z; Zhu W; Bi S; Li R; Hu H; Lin H; Tuan RS; Khor KA
    J Biomed Mater Res A; 2020 Apr; 108(4):1016-1027. PubMed ID: 31925910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of polycaprolactone/rGO nanocomposite scaffolds obtained by electrospinning.
    Correa E; Moncada ME; Gutiérrez OD; Vargas CA; Zapata VH
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109773. PubMed ID: 31349438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of nanofillers on the physico-mechanical properties of load bearing bone implants.
    Michael FM; Khalid M; Walvekar R; Ratnam CT; Ramarad S; Siddiqui H; Hoque ME
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():792-806. PubMed ID: 27287178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable shape memory behavior of polymer with surface modification of nanoparticles.
    Biswas A; Aswal VK; Maiti P
    J Colloid Interface Sci; 2019 Nov; 556():147-158. PubMed ID: 31445444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical properties of l-lysine based segmented polyurethane vascular grafts and their shape memory potential.
    Castillo-Cruz O; Avilés F; Vargas-Coronado R; Cauich-Rodríguez JV; Chan-Chan LH; Sessini V; Peponi L
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():887-895. PubMed ID: 31147060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effect of POSS Type on the Shape Memory Properties of Epoxy-Based Nanocomposites.
    Bram AI; Gouzman I; Bolker A; Eliaz N; Verker R
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32937814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets.
    Urban M; Strankowski M
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28906445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Current Status, Prospects, and Challenges of Shape Memory Polymers Application in Bone Tissue Engineering.
    Li T; Chen L; Yuan Y; Shi R
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.