These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35021786)

  • 1. Ultrashort Peptides-A Glimpse into the Structural Modifications and Their Applications as Biomaterials.
    Das R; Gayakvad B; Shinde SD; Rani J; Jain A; Sahu B
    ACS Appl Bio Mater; 2020 Sep; 3(9):5474-5499. PubMed ID: 35021786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-β supramolecular networks.
    Hiew SH; Guerette PA; Zvarec OJ; Phillips M; Zhou F; Su H; Pervushin K; Orner BP; Miserez A
    Acta Biomater; 2016 Dec; 46():41-54. PubMed ID: 27693688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Materials From the Supramolecular Self-Assembly of Short Helical β
    Kulkarni K; Habila N; Del Borgo MP; Aguilar MI
    Front Chem; 2019; 7():70. PubMed ID: 30828574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition.
    Chan KH; Xue B; Robinson RC; Hauser CAE
    Sci Rep; 2017 Oct; 7(1):12897. PubMed ID: 29018249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Scale Structure of Self-Assembled Lipidated Peptide Nanomaterials.
    Williams-Noonan BJ; Kulkarni K; Todorova N; Franceschi M; Wilde C; Borgo MPD; Serpell LC; Aguilar MI; Yarovsky I
    Adv Mater; 2024 Jun; 36(24):e2311103. PubMed ID: 38489817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assemble peptide biomaterials and their biomedical applications.
    Chen J; Zou X
    Bioact Mater; 2019 Dec; 4():120-131. PubMed ID: 31667440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling gelation with sequence: Towards programmable peptide hydrogels.
    Medini K; Mansel BW; Williams MAK; Brimble MA; Williams DE; Gerrard JA
    Acta Biomater; 2016 Oct; 43():30-37. PubMed ID: 27424085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in intracellular delivery through supramolecular self-assembly of oligonucleotides and peptides.
    Kim J; Narayana A; Patel S; Sahay G
    Theranostics; 2019; 9(11):3191-3212. PubMed ID: 31244949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic Stacking Facilitated Self-Assembly of Ultrashort Ionic Complementary Peptide Sequence: β-Sheet Nanofibers with Remarkable Gelation and Interfacial Properties.
    Wychowaniec JK; Patel R; Leach J; Mathomes R; Chhabria V; Patil-Sen Y; Hidalgo-Bastida A; Forbes RT; Hayes JM; Elsawy MA
    Biomacromolecules; 2020 Jul; 21(7):2670-2680. PubMed ID: 32401499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quest for New Generation Biocompatible Materials: Tailoring β-Peptide Structure and Interactions via Synergy of Experiments and Modelling.
    Aguilar MI; Yarovsky I
    J Mol Biol; 2024 Jun; ():168646. PubMed ID: 38848868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids.
    Giraud T; Bouguet-Bonnet S; Marchal P; Pickaert G; Averlant-Petit MC; Stefan L
    Nanoscale; 2020 Oct; 12(38):19905-19917. PubMed ID: 32985645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unravelling the antimicrobial activity of peptide hydrogel systems: current and future perspectives.
    Cross ER; Coulter SM; Pentlavalli S; Laverty G
    Soft Matter; 2021 Sep; 17(35):8001-8021. PubMed ID: 34525154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid-like self-assembly of peptide sequences from the adenovirus fiber shaft: insights from molecular dynamics simulations.
    Tamamis P; Kasotakis E; Mitraki A; Archontis G
    J Phys Chem B; 2009 Nov; 113(47):15639-47. PubMed ID: 19863125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and printability of ultrashort self-assembling peptide nanoparticles.
    Ghalayini S; Susapto HH; Hall S; Kahin K; Hauser CAE
    Int J Bioprint; 2019; 5(2):239. PubMed ID: 32596541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.