BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35022065)

  • 1. Using synthetic chromosome controls to evaluate the sequencing of difficult regions within the human genome.
    Reis ALM; Deveson IW; Madala BS; Wong T; Barker C; Xu J; Lennon N; Tong W; Mercer TR;
    Genome Biol; 2022 Jan; 23(1):19. PubMed ID: 35022065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exome-wide benchmark of difficult-to-sequence regions using short-read next-generation DNA sequencing.
    Hijikata A; Suyama M; Kikugawa S; Matoba R; Naruto T; Enomoto Y; Kurosawa K; Harada N; Yanagi K; Kaname T; Miyako K; Takazawa M; Sasai H; Hosokawa J; Itoga S; Yamaguchi T; Kosho T; Matsubara K; Kuroki Y; Fukami M; Adachi K; Nanba E; Tsuchida N; Uchiyama Y; Matsumoto N; Nishimura K; Ohara O
    Nucleic Acids Res; 2024 Jan; 52(1):114-124. PubMed ID: 38015437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The accuracy, feasibility and challenges of sequencing short tandem repeats using next-generation sequencing platforms.
    Zavodna M; Bagshaw A; Brauning R; Gemmell NJ
    PLoS One; 2014; 9(12):e113862. PubMed ID: 25436869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling of Short-Tandem-Repeat Disease Alleles in 12,632 Human Whole Genomes.
    Tang H; Kirkness EF; Lippert C; Biggs WH; Fabani M; Guzman E; Ramakrishnan S; Lavrenko V; Kakaradov B; Hou C; Hicks B; Heckerman D; Och FJ; Caskey CT; Venter JC; Telenti A
    Am J Hum Genet; 2017 Nov; 101(5):700-715. PubMed ID: 29100084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A repetitive sequence assembler based on next-generation sequencing.
    Lian S; Tu Y; Wang Y; Chen X; Wang L
    Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SeqAssist: a novel toolkit for preliminary analysis of next-generation sequencing data.
    Peng Y; Maxwell AS; Barker ND; Laird JG; Kennedy AJ; Wang N; Zhang C; Gong P
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S10. PubMed ID: 25349885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads.
    Liao X; Gao X; Zhang X; Wu FX; Wang J
    BMC Bioinformatics; 2020 Oct; 21(1):463. PubMed ID: 33076827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-read sequencing for rare human genetic diseases.
    Mitsuhashi S; Matsumoto N
    J Hum Genet; 2020 Jan; 65(1):11-19. PubMed ID: 31558760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles.
    Fiorentino F; Bono S; Biricik A; Nuccitelli A; Cotroneo E; Cottone G; Kokocinski F; Michel CE; Minasi MG; Greco E
    Hum Reprod; 2014 Dec; 29(12):2802-13. PubMed ID: 25336713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of next-generation sequencing technologies on HLA research.
    Hosomichi K; Shiina T; Tajima A; Inoue I
    J Hum Genet; 2015 Nov; 60(11):665-73. PubMed ID: 26311539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GAM-NGS: genomic assemblies merger for next generation sequencing.
    Vicedomini R; Vezzi F; Scalabrin S; Arvestad L; Policriti A
    BMC Bioinformatics; 2013; 14 Suppl 7(Suppl 7):S6. PubMed ID: 23815503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pipeline for local assembly of minisatellite alleles from single-molecule sequencing data.
    Ogeh D; Badge R
    Bioinformatics; 2017 Mar; 33(5):650-653. PubMed ID: 27998939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, multiplexed, whole genome and plasmid sequencing of foodborne pathogens using long-read nanopore technology.
    Taylor TL; Volkening JD; DeJesus E; Simmons M; Dimitrov KM; Tillman GE; Suarez DL; Afonso CL
    Sci Rep; 2019 Nov; 9(1):16350. PubMed ID: 31704961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsatellite development from genome skimming and transcriptome sequencing: comparison of strategies and lessons from frog species.
    Xia Y; Luo W; Yuan S; Zheng Y; Zeng X
    BMC Genomics; 2018 Dec; 19(1):886. PubMed ID: 30526480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a high-resolution NGS-based HLA-typing and analysis pipeline.
    Wittig M; Anmarkrud JA; Kässens JC; Koch S; Forster M; Ellinghaus E; Hov JR; Sauer S; Schimmler M; Ziemann M; Görg S; Jacob F; Karlsen TH; Franke A
    Nucleic Acids Res; 2015 Jun; 43(11):e70. PubMed ID: 25753671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF: a method for filtering short reads with tandem repeats for genome mapping.
    Misawa K
    Genomics; 2013 Jul; 102(1):35-7. PubMed ID: 23542167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing hybrid assembly of next-generation sequence data from Enterococcus faecium: a microbe with highly divergent genome.
    Wang Y; Yu Y; Pan B; Hao P; Li Y; Shao Z; Xu X; Li X
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S21. PubMed ID: 23282199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying, understanding, and correcting technical artifacts on the sex chromosomes in next-generation sequencing data.
    Webster TH; Couse M; Grande BM; Karlins E; Phung TN; Richmond PA; Whitford W; Wilson MA
    Gigascience; 2019 Jul; 8(7):. PubMed ID: 31289836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of synthetic DNA spike-in controls (sequins) for human genome sequencing.
    Blackburn J; Wong T; Madala BS; Barker C; Hardwick SA; Reis ALM; Deveson IW; Mercer TR
    Nat Protoc; 2019 Jul; 14(7):2119-2151. PubMed ID: 31217595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.