BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 35022219)

  • 1. Excitable Axonal Domains Adapt to Sensory Deprivation in the Olfactory System.
    George NM; Gentile Polese A; Merle L; Macklin WB; Restrepo D
    J Neurosci; 2022 Feb; 42(8):1491-1509. PubMed ID: 35022219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myelination of the developing lateral olfactory tract and anterior commissure.
    Collins LN; Hill DL; Brunjes PC
    J Comp Neurol; 2018 Aug; 526(11):1843-1858. PubMed ID: 29665005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brief Sensory Deprivation Triggers Cell Type-Specific Structural and Functional Plasticity in Olfactory Bulb Neurons.
    Galliano E; Hahn C; Browne LP; R Villamayor P; Tufo C; Crespo A; Grubb MS
    J Neurosci; 2021 Mar; 41(10):2135-2151. PubMed ID: 33483429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Length of myelin internodes of individual oligodendrocytes is controlled by microenvironment influenced by normal and input-deprived axonal activities in sensory deprived mouse models.
    Osanai Y; Shimizu T; Mori T; Hatanaka N; Kimori Y; Kobayashi K; Koyama S; Yoshimura Y; Nambu A; Ikenaka K
    Glia; 2018 Nov; 66(11):2514-2525. PubMed ID: 30240035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sensory deprivation on the developing mouse olfactory system: a light and electron microscopic, morphometric analysis.
    Benson TE; Ryugo DK; Hinds JW
    J Neurosci; 1984 Mar; 4(3):638-53. PubMed ID: 6707729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability.
    Hamada MS; Kole MH
    J Neurosci; 2015 May; 35(18):7272-86. PubMed ID: 25948275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei.
    Brunert D; Tsuno Y; Rothermel M; Shipley MT; Wachowiak M
    J Neurosci; 2016 Jun; 36(25):6820-35. PubMed ID: 27335411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2019 Dec; 39(49):9674-9688. PubMed ID: 31662426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilateral olfactory deprivation reveals a selective noradrenergic regulatory input to the olfactory bulb.
    Briñón JG; Crespo C; Weruaga E; Martínez-Guijarro FJ; Aijón J; Alonso JR
    Neuroscience; 2001; 102(1):1-10. PubMed ID: 11226665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olfactory bulb axonal outgrowth is inhibited by draxin.
    Ahmed G; Shinmyo Y; Naser IB; Hossain M; Song X; Tanaka H
    Biochem Biophys Res Commun; 2010 Aug; 398(4):730-4. PubMed ID: 20621059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine A
    Rotermund N; Winandy S; Fischer T; Schulz K; Fregin T; Alstedt N; Buchta M; Bartels J; Carlström M; Lohr C; Hirnet D
    J Physiol; 2018 Feb; 596(4):717-733. PubMed ID: 29274133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation.
    Barrera K; Chu P; Abramowitz J; Steger R; Ramos RL; Brumberg JC
    Dev Neurobiol; 2013 Apr; 73(4):297-314. PubMed ID: 23047707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-dependent regulation of excitable axonal domains.
    Susuki K; Kuba H
    J Physiol Sci; 2016 Mar; 66(2):99-104. PubMed ID: 26464228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myelinated axon physiology and regulation of neural circuit function.
    Suminaite D; Lyons DA; Livesey MR
    Glia; 2019 Nov; 67(11):2050-2062. PubMed ID: 31233642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways.
    Liu S; Puche AC; Shipley MT
    J Neurosci; 2016 Sep; 36(37):9604-17. PubMed ID: 27629712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Traumatic Brain Injury Identifies Distinct Early and Late Phase Axonal Conduction Deficits of White Matter Pathophysiology, and Reveals Intervening Recovery.
    Marion CM; Radomski KL; Cramer NP; Galdzicki Z; Armstrong RC
    J Neurosci; 2018 Oct; 38(41):8723-8736. PubMed ID: 30143572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of olfactory bulb synaptic inhibition by early unilateral olfactory deprivation.
    Wilson DA; Guthrie KM; Leon M
    Neurosci Lett; 1990 Aug; 116(3):250-6. PubMed ID: 2243602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myelinated non-axonal neuronal elements in the feline olfactory bulb lack sites with a nodal structural differentiation.
    Remahl S; Hildebrand C
    Brain Res; 1985 Jan; 325(1-2):1-11. PubMed ID: 3978411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.