BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 35022219)

  • 21. Cholecystokinin selectively activates short axon cells to enhance inhibition of olfactory bulb output neurons.
    Liu X; Liu S
    J Physiol; 2018 Jun; 596(11):2185-2207. PubMed ID: 29572837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Olfactory sensory deprivation increases the number of proBDNF-immunoreactive mitral cells in the olfactory bulb of mice.
    Biju KC; Mast TG; Fadool DA
    Neurosci Lett; 2008 Dec; 447(1):42-7. PubMed ID: 18834927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic Impairment of Olfactory Behavior and Signaling Mediated by an Olfactory Corticofugal System.
    Medinaceli Quintela R; Bauer J; Wallhorn L; Le K; Brunert D; Rothermel M
    J Neurosci; 2020 Sep; 40(38):7269-7285. PubMed ID: 32817250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local Acceleration of Neurofilament Transport at Nodes of Ranvier.
    Walker CL; Uchida A; Li Y; Trivedi N; Fenn JD; Monsma PC; Lariviére RC; Julien JP; Jung P; Brown A
    J Neurosci; 2019 Jan; 39(4):663-677. PubMed ID: 30541916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effect of functional olfactory deprivation on the GABAergic and catecholaminergic traits in the rat main olfactory bulb.
    Kosaka T; Kosaka K; Hama K; Wu JY; Nagatsu I
    Brain Res; 1987 Jun; 413(1):197-203. PubMed ID: 2885074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and disruption of functional domains in myelinated CNS axons.
    Griggs RB; Yermakov LM; Susuki K
    Neurosci Res; 2017 Mar; 116():77-87. PubMed ID: 27717670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambient sound stimulation tunes axonal conduction velocity by regulating radial growth of myelin on an individual, axon-by-axon basis.
    Stancu M; Wohlfrom H; Heß M; Grothe B; Leibold C; Kopp-Scheinpflug C
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2316439121. PubMed ID: 38442165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cholinergic inputs from Basal forebrain add an excitatory bias to odor coding in the olfactory bulb.
    Rothermel M; Carey RM; Puche A; Shipley MT; Wachowiak M
    J Neurosci; 2014 Mar; 34(13):4654-64. PubMed ID: 24672011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The olfactory bulb: coding and processing of odor molecule information.
    Mori K; Nagao H; Yoshihara Y
    Science; 1999 Oct; 286(5440):711-5. PubMed ID: 10531048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How does long-term odor deprivation affect the olfactory capacity of adult mice?
    Angely CJ; Coppola DM
    Behav Brain Funct; 2010 May; 6():26. PubMed ID: 20500833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early unilateral deprivation modifies olfactory bulb function.
    Guthrie KM; Wilson DA; Leon M
    J Neurosci; 1990 Oct; 10(10):3402-12. PubMed ID: 1976769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Olfactory experience modulated apoptosis in the developing olfactory bulb.
    Najbauer J; Leon M
    Brain Res; 1995 Mar; 674(2):245-51. PubMed ID: 7796103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential effects of unilateral olfactory deprivation on noradrenergic and cholinergic systems in the main olfactory bulb of the rat.
    Gómez C; Briñón JG; Colado MI; Orio L; Vidal M; Barbado MV; Alonso JR
    Neuroscience; 2006 Sep; 141(4):2117-28. PubMed ID: 16809000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
    Zavitz D; Youngstrom IA; Borisyuk A; Wachowiak M
    J Neurosci; 2020 Jul; 40(31):5954-5969. PubMed ID: 32561671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel processing of afferent olfactory sensory information.
    Vaaga CE; Westbrook GL
    J Physiol; 2016 Nov; 594(22):6715-6732. PubMed ID: 27377344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acetyl-l-carnitine enhances myelination of regenerated fibers of the lateral olfactory tract.
    Fukushima N; Yokouchi K; Kuroiwa M; Kawagishi K; Moriizumi T
    Neurosci Lett; 2017 Jul; 653():215-219. PubMed ID: 28583580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Odorant deprivation reversibly modulates transsynaptic changes in the NR2B-mediated CREB pathway in mouse piriform cortex.
    Kim HH; Puche AC; Margolis FL
    J Neurosci; 2006 Sep; 26(37):9548-59. PubMed ID: 16971539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myelin modifications after chronic sleep loss in adolescent mice.
    Bellesi M; Haswell JD; de Vivo L; Marshall W; Roseboom PH; Tononi G; Cirelli C
    Sleep; 2018 May; 41(5):. PubMed ID: 29741724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory input regulates spatial and subtype-specific patterns of neuronal turnover in the adult olfactory bulb.
    Sawada M; Kaneko N; Inada H; Wake H; Kato Y; Yanagawa Y; Kobayashi K; Nemoto T; Nabekura J; Sawamoto K
    J Neurosci; 2011 Aug; 31(32):11587-96. PubMed ID: 21832189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.