These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35022230)

  • 1. Stem-loop formation drives RNA folding in mechanical unzipping experiments.
    Rissone P; Bizarro CV; Ritort F
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleic Acid Thermodynamics Derived from Mechanical Unzipping Experiments.
    Rissone P; Ritort F
    Life (Basel); 2022 Jul; 12(7):. PubMed ID: 35888177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the specific and non-specific binding energies of Mg
    Martinez-Monge A; Pastor I; Bustamante C; Manosas M; Ritort F
    Biophys J; 2022 Aug; 121(16):3010-3022. PubMed ID: 35864738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies.
    Collin D; Ritort F; Jarzynski C; Smith SB; Tinoco I; Bustamante C
    Nature; 2005 Sep; 437(7056):231-4. PubMed ID: 16148928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of nearest-neighbor DNA parameters in magnesium from single molecule experiments.
    Huguet JM; Ribezzi-Crivellari M; Bizarro CV; Ritort F
    Nucleic Acids Res; 2017 Dec; 45(22):12921-12931. PubMed ID: 29177444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Observation of Folding Energy Landscape of RNA Hairpin at Mechanical Loading Rates.
    Xu H; Plaut B; Zhu X; Chen M; Mavinkurve U; Maiti A; Song G; Murari K; Mandal M
    J Phys Chem B; 2017 Mar; 121(10):2220-2229. PubMed ID: 28248503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods.
    Bizarro CV; Alemany A; Ritort F
    Nucleic Acids Res; 2012 Aug; 40(14):6922-35. PubMed ID: 22492710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-induced misfolding in RNA.
    Manosas M; Junier I; Ritort F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061925. PubMed ID: 19256886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins.
    Woodside MT; Behnke-Parks WM; Larizadeh K; Travers K; Herschlag D; Block SM
    Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6190-5. PubMed ID: 16606839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex Conformational Dynamics of the Heart Failure-Associated Pre-miRNA-377 Hairpin Revealed by Single-Molecule Optical Tweezers.
    Wypijewska Del Nogal A; Sundar Rajan V; Westerlund F; Wilhelmsson LM
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the complex folding kinetics of RNA hairpins: II. Effect of sequence, length, and misfolded states.
    Zhang W; Chen SJ
    Biophys J; 2006 Feb; 90(3):778-87. PubMed ID: 16272439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule derivation of salt dependent base-pair free energies in DNA.
    Huguet JM; Bizarro CV; Forns N; Smith SB; Bustamante C; Ritort F
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15431-6. PubMed ID: 20716688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the Conformational Free-Energy Landscape of RNA Stem-Loops Using Single-Molecule Field-Effect Transistors.
    Jang SS; Dubnik S; Hon J; Hellenkamp B; Lynall DG; Shepard KL; Nuckolls C; Gonzalez RL
    J Am Chem Soc; 2023 Jan; 145(1):402-412. PubMed ID: 36547391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining temperature and force to study folding of an RNA hairpin.
    Stephenson W; Keller S; Santiago R; Albrecht JE; Asare-Okai PN; Tenenbaum SA; Zuker M; Li PT
    Phys Chem Chem Phys; 2014 Jan; 16(3):906-17. PubMed ID: 24276015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory for RNA folding, stretching, and melting including loops and salt.
    Einert TR; Netz RR
    Biophys J; 2011 Jun; 100(11):2745-53. PubMed ID: 21641320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt contribution to RNA tertiary structure folding stability.
    Tan ZJ; Chen SJ
    Biophys J; 2011 Jul; 101(1):176-87. PubMed ID: 21723828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule dynamics of mechanical coiled-coil unzipping.
    Bornschlögl T; Rief M
    Langmuir; 2008 Feb; 24(4):1338-42. PubMed ID: 17973511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time control of the energy landscape by force directs the folding of RNA molecules.
    Li PT; Bustamante C; Tinoco I
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7039-44. PubMed ID: 17438300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.