These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Park SH; Kim S; Hahn JS Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745 [TBL] [Abstract][Full Text] [Related]
11. Leucine biosynthesis in fungi: entering metabolism through the back door. Kohlhaw GB Microbiol Mol Biol Rev; 2003 Mar; 67(1):1-15, table of contents. PubMed ID: 12626680 [TBL] [Abstract][Full Text] [Related]
12. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae. Lee KM; Kim SK; Lee YG; Park KH; Seo JH Bioresour Technol; 2018 Nov; 268():271-277. PubMed ID: 30081287 [TBL] [Abstract][Full Text] [Related]
13. Properties of a trifluoroleucine-resistant mutant of Saccharomyces cerevisiae. Oba T; Yamamoto Y; Nomiyama S; Suenaga H; Muta S; Tashiro K; Kuhara S Biosci Biotechnol Biochem; 2006 Jul; 70(7):1776-9. PubMed ID: 16861814 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol. Takagi H; Hashida K; Watanabe D; Nasuno R; Ohashi M; Iha T; Nezuo M; Tsukahara M J Biosci Bioeng; 2015 Feb; 119(2):140-7. PubMed ID: 25060730 [TBL] [Abstract][Full Text] [Related]
15. Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Kuroda K; Hammer SK; Watanabe Y; Montaño López J; Fink GR; Stephanopoulos G; Ueda M; Avalos JL Cell Syst; 2019 Dec; 9(6):534-547.e5. PubMed ID: 31734159 [TBL] [Abstract][Full Text] [Related]
16. Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae. Yuan J; Mishra P; Ching CB J Ind Microbiol Biotechnol; 2017 Jan; 44(1):107-117. PubMed ID: 27826727 [TBL] [Abstract][Full Text] [Related]
17. OLIVe: A Genetically Encoded Fluorescent Biosensor for Quantitative Imaging of Branched-Chain Amino Acid Levels inside Single Living Cells. Yoshida T; Nakajima H; Takahashi S; Kakizuka A; Imamura H ACS Sens; 2019 Dec; 4(12):3333-3342. PubMed ID: 31845569 [TBL] [Abstract][Full Text] [Related]
18. Establishment of BmoR-based biosensor to screen isobutanol overproducer. Yu H; Wang N; Huo W; Zhang Y; Zhang W; Yang Y; Chen Z; Huo YX Microb Cell Fact; 2019 Feb; 18(1):30. PubMed ID: 30732651 [TBL] [Abstract][Full Text] [Related]
19. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368 [TBL] [Abstract][Full Text] [Related]
20. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Avalos JL; Fink GR; Stephanopoulos G Nat Biotechnol; 2013 Apr; 31(4):335-41. PubMed ID: 23417095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]