BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35022522)

  • 21. Antitumor effect of baicalin from the Scutellaria baicalensis radix extract in B-acute lymphoblastic leukemia with different chromosomal rearrangements.
    Orzechowska BU; Wróbel G; Turlej E; Jatczak B; Sochocka M; Chaber R
    Int Immunopharmacol; 2020 Feb; 79():106114. PubMed ID: 31881375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications.
    Gianfelici V; Chiaretti S; Demeyer S; Di Giacomo F; Messina M; La Starza R; Peragine N; Paoloni F; Geerdens E; Pierini V; Elia L; Mancini M; De Propris MS; Apicella V; Gaidano G; Testi AM; Vitale A; Vignetti M; Mecucci C; Guarini A; Cools J; Foà R
    Haematologica; 2016 Aug; 101(8):941-50. PubMed ID: 27151993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RUNX1 is required for oncogenic
    Choi A; Illendula A; Pulikkan JA; Roderick JE; Tesell J; Yu J; Hermance N; Zhu LJ; Castilla LH; Bushweller JH; Kelliher MA
    Blood; 2017 Oct; 130(15):1722-1733. PubMed ID: 28790107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. p21(WAF1) modulates drug-induced apoptosis and cell cycle arrest in B-cell precursor acute lymphoblastic leukemia.
    Davies C; Hogarth LA; Mackenzie KL; Hall AG; Lock RB
    Cell Cycle; 2015; 14(22):3602-12. PubMed ID: 26506264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combinatorial effects of histone deacetylase inhibitors (HDACi), vorinostat and entinostat, and adaphostin are characterized by distinct redox alterations.
    Rivera-Del Valle N; Cheng T; Irwin ME; Donnella H; Singh MM; Chandra J
    Cancer Chemother Pharmacol; 2018 Mar; 81(3):483-495. PubMed ID: 29313067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vorinostat and quinacrine have synergistic effects in T-cell acute lymphoblastic leukemia through reactive oxygen species increase and mitophagy inhibition.
    Jing B; Jin J; Xiang R; Liu M; Yang L; Tong Y; Xiao X; Lei H; Liu W; Xu H; Deng J; Zhou L; Wu Y
    Cell Death Dis; 2018 May; 9(6):589. PubMed ID: 29789603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combination efficacy of ruxolitinib with standard-of-care drugs in CRLF2-rearranged Ph-like acute lymphoblastic leukemia.
    Bӧhm JW; Sia KCS; Jones C; Evans K; Mariana A; Pang I; Failes T; Zhong L; Mayoh C; Landman R; Collins R; Erickson SW; Arndt G; Raftery MJ; Wilkins MR; Norris MD; Haber M; Marshall GM; Lock RB
    Leukemia; 2021 Nov; 35(11):3101-3112. PubMed ID: 33895784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased MYB alternative promoter usage is associated with relapse in acute lymphoblastic leukemia.
    Fehr A; Arvidsson G; Nordlund J; Lönnerholm G; Stenman G; Andersson MK
    Genes Chromosomes Cancer; 2023 Oct; 62(10):597-606. PubMed ID: 37218648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Small Molecule Tyrosine Kinase 2 Pseudokinase Ligands Block Cytokine-Induced TYK2-Mediated Signaling Pathways.
    Zhou Y; Li X; Shen R; Wang X; Zhang F; Liu S; Li D; Liu J; Li P; Yan Y; Dong P; Zhang Z; Wu H; Zhuang L; Chowdhury R; Miller M; Issa M; Mao Y; Chen H; Feng J; Li J; Bai C; He F; Tao W
    Front Immunol; 2022; 13():884399. PubMed ID: 35693820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. JAK mutations in high-risk childhood acute lymphoblastic leukemia.
    Mullighan CG; Zhang J; Harvey RC; Collins-Underwood JR; Schulman BA; Phillips LA; Tasian SK; Loh ML; Su X; Liu W; Devidas M; Atlas SR; Chen IM; Clifford RJ; Gerhard DS; Carroll WL; Reaman GH; Smith M; Downing JR; Hunger SP; Willman CL
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9414-8. PubMed ID: 19470474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drug resistance to nelarabine in leukemia cell lines might be caused by reduced expression of deoxycytidine kinase through epigenetic mechanisms.
    Yoshida K; Fujita A; Narazaki H; Asano T; Itoh Y
    Cancer Chemother Pharmacol; 2022 Jan; 89(1):83-91. PubMed ID: 34825941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenetic inactivation of Notch-Hes pathway in human B-cell acute lymphoblastic leukemia.
    Kuang SQ; Fang Z; Zweidler-McKay PA; Yang H; Wei Y; Gonzalez-Cervantes EA; Boumber Y; Garcia-Manero G
    PLoS One; 2013; 8(4):e61807. PubMed ID: 23637910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New strategies in acute lymphoblastic leukemia: translating advances in genomics into clinical practice.
    Mullighan CG
    Clin Cancer Res; 2011 Feb; 17(3):396-400. PubMed ID: 21149616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities.
    Losdyck E; Hornakova T; Springuel L; Degryse S; Gielen O; Cools J; Constantinescu SN; Flex E; Tartaglia M; Renauld JC; Knoops L
    J Biol Chem; 2015 Nov; 290(48):29022-34. PubMed ID: 26446793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a rearrangement in the c-MYB promoter in the acute lymphoblastic leukemia cell line CCRF-CEM.
    Jacobs SM; Gorse KM; Kennedy SJ; Westin EH
    Cancer Genet Cytogenet; 1994 Jul; 75(1):31-9. PubMed ID: 8039161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome.
    Schwartzman O; Savino AM; Gombert M; Palmi C; Cario G; Schrappe M; Eckert C; von Stackelberg A; Huang JY; Hameiri-Grossman M; Avigad S; Te Kronnie G; Geron I; Birger Y; Rein A; Zarfati G; Fischer U; Mukamel Z; Stanulla M; Biondi A; Cazzaniga G; Vetere A; Wagner BK; Chen Z; Chen SJ; Tanay A; Borkhardt A; Izraeli S
    Proc Natl Acad Sci U S A; 2017 May; 114(20):E4030-E4039. PubMed ID: 28461505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia.
    Tasian SK; Teachey DT; Li Y; Shen F; Harvey RC; Chen IM; Ryan T; Vincent TL; Willman CL; Perl AE; Hunger SP; Loh ML; Carroll M; Grupp SA
    Blood; 2017 Jan; 129(2):177-187. PubMed ID: 27777238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lack of constitutive activation of Janus kinases and signal transduction and activation of transcription factors in Philadelphia chromosome-positive acute lymphoblastic leukemia.
    Kanwar VS; Witthuhn B; Campana D; Ihle JN
    Blood; 1996 Jun; 87(11):4911-2. PubMed ID: 8639867
    [No Abstract]   [Full Text] [Related]  

  • 39. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia.
    Vicente C; Schwab C; Broux M; Geerdens E; Degryse S; Demeyer S; Lahortiga I; Elliott A; Chilton L; La Starza R; Mecucci C; Vandenberghe P; Goulden N; Vora A; Moorman AV; Soulier J; Harrison CJ; Clappier E; Cools J
    Haematologica; 2015 Oct; 100(10):1301-10. PubMed ID: 26206799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TYK2 is a key regulator of the surveillance of B lymphoid tumors.
    Stoiber D; Kovacic B; Schuster C; Schellack C; Karaghiosoff M; Kreibich R; Weisz E; Artwohl M; Kleine OC; Muller M; Baumgartner-Parzer S; Ghysdael J; Freissmuth M; Sexl V
    J Clin Invest; 2004 Dec; 114(11):1650-8. PubMed ID: 15578097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.