These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 3502293)
1. Analysis of kinetic rate constants in [18F]fluorodeoxyglucose model using a least square fitting package SALS (statistical analysis with least squares). Uehara S; Kuwabara Y; Ichiya Y; Otsuka M; Ayabe Y; Miyake Y; Masuda K; Yoshimura A Radioisotopes; 1987 Dec; 36(12):653-6. PubMed ID: 3502293 [TBL] [Abstract][Full Text] [Related]
2. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose. Heiss WD; Pawlik G; Herholz K; Wagner R; Göldner H; Wienhard K J Cereb Blood Flow Metab; 1984 Jun; 4(2):212-23. PubMed ID: 6609929 [TBL] [Abstract][Full Text] [Related]
3. In vivo measurement of [18F]fluorodeoxyglucose rate constants in rat brain by external coincidence counting. Redies C; Matsuda H; Diksic M; Meyer E; Yamamoto YL Neuroscience; 1987 Aug; 22(2):593-9. PubMed ID: 3670599 [TBL] [Abstract][Full Text] [Related]
4. Determination of 18F-fluoro-2-deoxy-D-glucose rate constants in the anesthetized baboon brain with dynamic positron tomography. Miyazawa H; Osmont A; Petit-Taboué MC; Tillet I; Travère JM; Young AR; Barré L; MacKenzie ET; Baron JC J Neurosci Methods; 1993 Dec; 50(3):263-72. PubMed ID: 8152238 [TBL] [Abstract][Full Text] [Related]
5. Effect of vascular activity in the determination of rate constants for the uptake of 18F-labeled 2-fluoro-2-deoxy-D-glucose: error analysis and normal values in older subjects. Evans AC; Diksic M; Yamamoto YL; Kato A; Dagher A; Redies C; Hakim A J Cereb Blood Flow Metab; 1986 Dec; 6(6):724-38. PubMed ID: 3491827 [TBL] [Abstract][Full Text] [Related]
6. Tomographic mapping of kinetic rate constants in the fluorodeoxyglucose model using dynamic positron emission tomography. Sasaki H; Kanno I; Murakami M; Shishido F; Uemura K J Cereb Blood Flow Metab; 1986 Aug; 6(4):447-54. PubMed ID: 3488323 [TBL] [Abstract][Full Text] [Related]
7. Effect of selecting a fixed dephosphorylation rate on the estimation of rate constants and rCMRGlu from dynamic [18F] fluorodeoxyglucose/PET data. Dhawan V; Moeller JR; Strother SC; Evans AC; Rottenberg DA J Nucl Med; 1989 Sep; 30(9):1483-8. PubMed ID: 2788721 [TBL] [Abstract][Full Text] [Related]
8. Determination of regional rate constants from dynamic FDG-PET studies in Parkinson's disease. Piert M; Koeppe RA; Giordani B; Minoshima S; Kuhl DE J Nucl Med; 1996 Jul; 37(7):1115-22. PubMed ID: 8965180 [TBL] [Abstract][Full Text] [Related]
9. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. Schmidt K; Lucignani G; Moresco RM; Rizzo G; Gilardi MC; Messa C; Colombo F; Fazio F; Sokoloff L J Cereb Blood Flow Metab; 1992 Sep; 12(5):823-34. PubMed ID: 1506447 [TBL] [Abstract][Full Text] [Related]
10. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Maquet P; Dive D; Salmon E; Sadzot B; Franco G; Poirrier R; von Frenckell R; Franck G Brain Res; 1990 Apr; 513(1):136-43. PubMed ID: 2350676 [TBL] [Abstract][Full Text] [Related]
12. Uncoupling of hexose transport and phosphorylation in human gliomas demonstrated by PET. Herholz K; Ziffling P; Staffen W; Pawlik G; Wagner R; Wienhard K; Heiss WD Eur J Cancer Clin Oncol; 1988 Jul; 24(7):1139-50. PubMed ID: 3262062 [TBL] [Abstract][Full Text] [Related]
13. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. Reivich M; Alavi A; Wolf A; Fowler J; Russell J; Arnett C; MacGregor RR; Shiue CY; Atkins H; Anand A J Cereb Blood Flow Metab; 1985 Jun; 5(2):179-92. PubMed ID: 3988820 [TBL] [Abstract][Full Text] [Related]
14. Cerebral diaschisis in patients with malignant glioma. Rozental JM; Levine RL; Nickles RJ; Dobkin JA; Hanson JM J Neurooncol; 1990 Apr; 8(2):153-61. PubMed ID: 2358850 [TBL] [Abstract][Full Text] [Related]
15. Measurements of glucose phosphorylation with FDG and PET are not reduced by dephosphorylation of FDG-6-phosphate. Kuwabara H; Gjedde A J Nucl Med; 1991 Apr; 32(4):692-8. PubMed ID: 2013809 [TBL] [Abstract][Full Text] [Related]
16. Diminished glucose transport and phosphorylation in Alzheimer's disease determined by dynamic FDG-PET. Piert M; Koeppe RA; Giordani B; Berent S; Kuhl DE J Nucl Med; 1996 Feb; 37(2):201-8. PubMed ID: 8667045 [TBL] [Abstract][Full Text] [Related]
18. [Comparison of the different methods to calculate cerebral glucose utilization using F-18 FDG and PET]. Kuwabara Y; Ichiya Y; Otsuka M; Tahara T; Miyake Y; Uehara S; Yoshimura A; Masuda K Kaku Igaku; 1989 Mar; 26(3):459-63. PubMed ID: 2787439 [No Abstract] [Full Text] [Related]
19. Reproducibility of cerebral glucose utilization measured by PET and the [18F]-2-fluoro-2-deoxy-d-glucose method in resting, healthy human subjects. Maquet P; Dive D; Salmon E; von Frenckel R; Franck G Eur J Nucl Med; 1990; 16(4-6):267-73. PubMed ID: 2351175 [TBL] [Abstract][Full Text] [Related]