These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35023446)

  • 1. Impact resistance test system for the helmet based on a polyvinylidene fluoride piezoelectric sensor array.
    Li Q; Liao X; Huang X; Wei X; Zhang X
    Int J Occup Saf Ergon; 2023 Mar; 29(1):199-206. PubMed ID: 35023446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-Composite Foam Sensor System in Football Helmets.
    Merrell AJ; Christensen WF; Seeley MK; Bowden AE; Fullwood DT
    Ann Biomed Eng; 2017 Dec; 45(12):2742-2749. PubMed ID: 28884239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adult headform impact tests of three Japanese child bicycle helmets into a vehicle.
    Mizuno K; Ito D; Yoshida R; Masuda H; Okada H; Nomura M; Fujii C
    Accid Anal Prev; 2014 Dec; 73():359-72. PubMed ID: 25290036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Reliability of Polyvinylidene Fluoride Sensor for Intra- and Intersession Measurements.
    Manjunatha RG; Prakash S; Rajanna K
    Indian J Otolaryngol Head Neck Surg; 2019 Nov; 71(Suppl 3):1935-1939. PubMed ID: 31763271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of PVDF Sensing Characteristics by Retooling the Near-Field Direct-Write Electrospinning System.
    Hoe ZY; Chang CC; Chen JJ; Yen CK; Wang SY; Kao YH; Li WM; Chen WF; Pan CT
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Test Bed to Examine Helmet Fit and Retention and Biomechanical Measures of Head and Neck Injury in Simulated Impact.
    Yu HY; Knowles BM; Dennison CR
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the presence of the body in helmet oblique impacts.
    Ghajari M; Peldschus S; Galvanetto U; Iannucci L
    Accid Anal Prev; 2013 Jan; 50():263-71. PubMed ID: 22595298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of polyvinylidene fluoride nasal sensor to assess nasal obstruction in comparison with subjective technique.
    Roopa Manjunatha G; Mahapatra DR; Prakash S; Rajanna K
    Am J Otolaryngol; 2015; 36(2):122-9. PubMed ID: 25447932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyvinylidene fluoride film sensors in collocated feedback structural control: application for suppressing impact-induced disturbances.
    Ma CC; Chuang KC; Pan SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2539-54. PubMed ID: 23443690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indoor Test System for Liquid CO
    Huang X; Li Q; Wei X; Yang X; Luo D; Zeng H; Wang H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of combined thermal/pressure polyvinylidene fluoride film airflow sensor in polysomnography.
    Kryger M; Eiken T; Qin L
    Sleep Breath; 2013 Dec; 17(4):1267-73. PubMed ID: 23716021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of polyvinylidene fluoride nasal sensor to assess deviated nasal septum in comparision with peak nasal inspiratory flow measurements.
    Manjunatha RG; Rajanna K; Mahapatra DR; Prakash S
    Am J Rhinol Allergy; 2014; 28(1):e62-7. PubMed ID: 24717887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomimetic tactile sensing system based on polyvinylidene fluoride film.
    Xin Y; Tian H; Guo C; Li X; Sun H; Wang P; Qian C; Wang S; Wang C
    Rev Sci Instrum; 2016 Feb; 87(2):025002. PubMed ID: 26931883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyvinylidene fluoride film based nasal sensor to monitor human respiration pattern: an initial clinical study.
    Roopa Manjunatha G; Rajanna K; Mahapatra DR; Nayak MM; Krishnaswamy UM; Srinivasa R
    J Clin Monit Comput; 2013 Dec; 27(6):647-57. PubMed ID: 23771706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a flexible force sensor for measurement of helmet foam impact performance.
    Ouckama R; Pearsall DJ
    J Biomech; 2011 Mar; 44(5):904-9. PubMed ID: 21194694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force induced piezoelectric effect of polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene nanofibrous scaffolds.
    Al Halabi F; Gryshkov O; Kuhn AI; Kapralova VM; Glasmacher B
    Int J Artif Organs; 2018 Nov; 41(11):811-822. PubMed ID: 29976127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age has a Minimal Effect on the Impact Performance of Field-Used Bicycle Helmets.
    DeMarco AL; Good CA; Chimich DD; Bakal JA; Siegmund GP
    Ann Biomed Eng; 2017 Aug; 45(8):1974-1984. PubMed ID: 28462479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Helmet Weight on Hybrid III Head and Neck Responses by Comparing Unhelmeted and Helmeted Impacts.
    Jadischke R; Viano DC; McCarthy J; King AI
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27456840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Piezoelectric Silk Sensors Doped with Graphene for Biosensing by Near-Field Electrospinning.
    Lee MC; Lin GY; Hoe ZY; Pan CT
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of cricket helmet performance and comparison with baseball and ice hockey helmets.
    McIntosh AS; Janda D
    Br J Sports Med; 2003 Aug; 37(4):325-30. PubMed ID: 12893718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.