These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Aromaticity-promoted CO Zhuang D; Rouf AM; Li Y; Dai C; Zhu J Chem Asian J; 2020 Jan; 15(2):266-272. PubMed ID: 31763760 [TBL] [Abstract][Full Text] [Related]
3. Screening Carbon-Boron Frustrated Lewis Pairs for Small-Molecule Activation including N Zeng J; Qiu R; Zhu J Chem Asian J; 2023 Mar; 18(5):e202201236. PubMed ID: 36647683 [TBL] [Abstract][Full Text] [Related]
4. Unveiling the Obscure Potential of O-Carborane Based IFLPs for CO Faizan M; Behera D; Chakraborty M; Pawar R Chemphyschem; 2024 Dec; 25(24):e202400647. PubMed ID: 39189661 [TBL] [Abstract][Full Text] [Related]
5. Boron based intramolecular heterocyclic frustrated Lewis pairs as organocatalysts for CO Faizan M; Pawar R J Comput Chem; 2022 Aug; 43(22):1474-1483. PubMed ID: 35733241 [TBL] [Abstract][Full Text] [Related]
6. Understanding the reactivity of geminal P/B and P/Al frustrated Lewis pairs in CO Ramadhan MD; Surawatanawong P Dalton Trans; 2021 Aug; 50(32):11307-11316. PubMed ID: 34342322 [TBL] [Abstract][Full Text] [Related]
7. A kinetic study on the reduction of CO2 by frustrated Lewis pairs: from understanding to rational design. Liu L; Vankova N; Heine T Phys Chem Chem Phys; 2016 Feb; 18(5):3567-74. PubMed ID: 26751729 [TBL] [Abstract][Full Text] [Related]
8. Exploring the metal-free catalytic reduction of CO Patel TR; Ganguly B J Mol Graph Model; 2022 Jun; 113():108150. PubMed ID: 35227971 [TBL] [Abstract][Full Text] [Related]
9. Insight into the relative reactivity of "frustrated Lewis pairs" and stable carbenes in activating H2 and CH4: a comparative computational study. Li H; Zhao L; Lu G; Mo Y; Wang ZX Phys Chem Chem Phys; 2010; 12(20):5268-75. PubMed ID: 21491652 [TBL] [Abstract][Full Text] [Related]
13. Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change. Rich AL; Patel JT Environ Health Insights; 2015; 9(Suppl 1):35-9. PubMed ID: 25987843 [TBL] [Abstract][Full Text] [Related]
14. CeO Jing R; Lu X; Wang J; Xiong J; Qiao Y; Zhang R; Yu Z Small; 2024 Jun; 20(26):e2310926. PubMed ID: 38239093 [TBL] [Abstract][Full Text] [Related]
15. Orbital and free energy landscape expedition towards the unexplored catalytic realm of aromatically modified FLPs for CO Faizan M; Chakraborty M; Bana D; Pawar R Phys Chem Chem Phys; 2024 Sep; 26(36):23609-23622. PubMed ID: 39081195 [TBL] [Abstract][Full Text] [Related]
16. Addition reactions and diazomethane capture by the intramolecular P-O-B FLP: tBu Zhu D; Qu ZW; Stephan DW Dalton Trans; 2020 Jan; 49(3):901-910. PubMed ID: 31859700 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic insight into the CO2 capture by amidophosphoranes: interplay of the ring strain and the trans influence determines the reactivity of the frustrated Lewis pairs. Zhu J; An K Chem Asian J; 2013 Dec; 8(12):3147-51. PubMed ID: 24038966 [TBL] [Abstract][Full Text] [Related]
18. Effects of Ionic Liquids on the Thermodynamics of Hydrogen Activation by Frustrated Lewis Pairs: A Density Functional Theory Study*. Liu X; Li X; Yao X; Zhao W; Liu L Chemphyschem; 2021 May; 22(10):968-974. PubMed ID: 33749087 [TBL] [Abstract][Full Text] [Related]
19. Understanding the C-F Bond Activation Mediated by Frustrated Lewis Pairs: Crucial Role of Non-covalent Interactions. Cabrera-Trujillo JJ; Fernández I Chemistry; 2021 Feb; 27(11):3823-3831. PubMed ID: 33231334 [TBL] [Abstract][Full Text] [Related]
20. On the mechanism of hydrogen activation by frustrated Lewis pairs. Zeonjuk LL; Vankova N; Mavrandonakis A; Heine T; Röschenthaler GV; Eicher J Chemistry; 2013 Dec; 19(51):17413-24. PubMed ID: 24318267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]