These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35023729)
1. Sodium Dodecyl Sulfate-Dependent Disassembly and Reassembly of Soybean Lipophilic Protein Nanoparticles: An Environmentally Friendly Nanocarrier for Resveratrol. Zhong M; Sun Y; Sun Y; Song H; Zhang S; Qi B; Li Y J Agric Food Chem; 2022 Feb; 70(5):1640-1651. PubMed ID: 35023729 [TBL] [Abstract][Full Text] [Related]
2. Dithiothreitol-induced reassembly of soybean lipophilic protein as a carrier for resveratrol: Preparation, structural characterization, and functional properties. Zhong M; Sun Y; Song H; Liao Y; Qi B; Li Y Food Chem; 2023 Jan; 399():133964. PubMed ID: 36029675 [TBL] [Abstract][Full Text] [Related]
3. Novel Soy β-Conglycinin Core-Shell Nanoparticles As Outstanding Ecofriendly Nanocarriers for Curcumin. Liu LL; Liu PZ; Li XT; Zhang N; Tang CH J Agric Food Chem; 2019 Jun; 67(22):6292-6301. PubMed ID: 31117486 [TBL] [Abstract][Full Text] [Related]
4. Ethanol as a switch to induce soybean lipophilic protein self-assembly and resveratrol delivery. Zhong M; Sun Y; Song H; Wang S; Qi B; Li X; Li Y Food Chem X; 2023 Jun; 18():100698. PubMed ID: 37397220 [TBL] [Abstract][Full Text] [Related]
5. Soy lipophilic protein self-assembled by pH-shift combined with heat treatment: Structure, hydrophobic resveratrol encapsulation, emulsification, and digestion. Zhong M; Sun Y; Sun Y; Fang L; Wang Q; Qi B; Li Y Food Chem; 2022 Nov; 394():133514. PubMed ID: 35728470 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Park S; Cha SH; Cho I; Park S; Park Y; Cho S; Park Y Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1160-9. PubMed ID: 26478416 [TBL] [Abstract][Full Text] [Related]
7. Comparison of solubilization capacity of resveratrol in sodium 3α, 12α -dihydroxy-7-oxo-5 β-cholanoate and sodium dodecyl sulfate. Cvejić J; Poša M; Sebenji A; Atanacković M ScientificWorldJournal; 2014; 2014():265953. PubMed ID: 24688374 [TBL] [Abstract][Full Text] [Related]
8. High resveratrol-loaded microcapsules with trehalose and OSA starch as the wall materials: Fabrication, characterization, and evaluation. Xie X; Jin X; Huang J; Yi J; Li X; Huang Z; Lin Q; Guo B Int J Biol Macromol; 2023 Jul; 242(Pt 2):124825. PubMed ID: 37196714 [TBL] [Abstract][Full Text] [Related]
9. Formulation design, optimization and Hasija R; Chaurasia S; Gupta S Pharm Dev Technol; 2021 Nov; 26(9):953-966. PubMed ID: 34374616 [TBL] [Abstract][Full Text] [Related]
10. Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin. Liu Y; Fan Y; Gao L; Zhang Y; Yi J Food Funct; 2018 Sep; 9(9):4781-4790. PubMed ID: 30124711 [TBL] [Abstract][Full Text] [Related]
11. Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils. Yi J; He Q; Peng G; Fan Y Food Chem; 2022 May; 377():131942. PubMed ID: 34990943 [TBL] [Abstract][Full Text] [Related]
12. Improving Oral Bioavailability of Luteolin Nanocrystals by Surface Modification of Sodium Dodecyl Sulfate. Liu J; Sun Y; Cheng M; Liu Q; Liu W; Gao C; Feng J; Jin Y; Tu L AAPS PharmSciTech; 2021 Apr; 22(3):133. PubMed ID: 33855636 [TBL] [Abstract][Full Text] [Related]
13. Ginkgolides-loaded soybean phospholipid-stabilized nanosuspension with improved storage stability and in vivo bioavailability. Wang P; Cao X; Chu Y; Wang P Colloids Surf B Biointerfaces; 2019 Sep; 181():910-917. PubMed ID: 31382340 [TBL] [Abstract][Full Text] [Related]
14. Soy protein isolate as a nanocarrier for enhanced water dispersibility, stability and bioaccessibility of β-carotene. Deng XX; Zhang N; Tang CH J Sci Food Agric; 2017 May; 97(7):2230-2237. PubMed ID: 27616430 [TBL] [Abstract][Full Text] [Related]
15. [Effect of Cooking and Processing on Quantitation of Soybean Proteins]. Watanabe H; Akiyama H; Osawa N; Imura K; Iseki N; Ueda S; Masaoka T; Akaboshi C Shokuhin Eiseigaku Zasshi; 2021; 62(6):193-202. PubMed ID: 34955470 [TBL] [Abstract][Full Text] [Related]
16. Human ferritin nanocarriers for drug-delivery: A molecular view of the disassembly process. Lucignano R; Sanità G; Esposito E; Russo Krauss I; D'Ursi AM; Buonocore M; Picone D Int J Biol Macromol; 2024 Oct; 277(Pt 2):134373. PubMed ID: 39094874 [TBL] [Abstract][Full Text] [Related]
17. Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. Pujara N; Jambhrunkar S; Wong KY; McGuckin M; Popat A J Colloid Interface Sci; 2017 Feb; 488():303-308. PubMed ID: 27838554 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of β-conglycinin in soybean cotyledon through the formation of disulfide bonds between α'- and α-subunits. Wadahama H; Iwasaki K; Matsusaki M; Nishizawa K; Ishimoto M; Arisaka F; Takagi K; Urade R Plant Physiol; 2012 Mar; 158(3):1395-405. PubMed ID: 22218927 [TBL] [Abstract][Full Text] [Related]
19. Use of sodium dodecyl sulfate polyacrylamide gel electrophoresis to measure degradation of soluble soybean proteins by Prevotella ruminicola GA33 or mixed ruminal microbes in vitro. Schwingel WR; Bates DB J Anim Sci; 1996 Feb; 74(2):475-82. PubMed ID: 8690685 [TBL] [Abstract][Full Text] [Related]
20. Preparation and in vitro/in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nanoparticles. Zu Y; Zhang Y; Wang W; Zhao X; Han X; Wang K; Ge Y Drug Deliv; 2016; 23(3):981-91. PubMed ID: 24918466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]