These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Ligand Exchange Strategy to Achieve Chiral Perovskite Nanocrystals with a High Photoluminescence Quantum Yield and Regulation of the Chiroptical Property. Jiang S; Song Y; Kang H; Li B; Yang K; Xing G; Yu Y; Li S; Zhao P; Zhang T ACS Appl Mater Interfaces; 2022 Jan; 14(2):3385-3394. PubMed ID: 34932328 [TBL] [Abstract][Full Text] [Related]
7. Chiral Functionalization of an Atomically Precise Noble Metal Cluster: Insights into the Origin of Chirality and Photoluminescence. Krishnadas KR; Sementa L; Medves M; Fortunelli A; Stener M; Fürstenberg A; Longhi G; Bürgi T ACS Nano; 2020 Aug; 14(8):9687-9700. PubMed ID: 32672935 [TBL] [Abstract][Full Text] [Related]
8. Effect of Chiral Ligand Concentration and Binding Mode on Chiroptical Activity of CdSe/CdS Quantum Dots. Kuznetsova VA; Mates-Torres E; Prochukhan N; Marcastel M; Purcell-Milton F; O'Brien J; Visheratina AK; Martinez-Carmona M; Gromova Y; Garcia-Melchor M; Gun'ko YK ACS Nano; 2019 Nov; 13(11):13560-13572. PubMed ID: 31697474 [TBL] [Abstract][Full Text] [Related]
9. Recent Progress of Chiral Perovskites: Materials, Synthesis, and Properties. Ma J; Wang H; Li D Adv Mater; 2021 Jul; 33(26):e2008785. PubMed ID: 34028888 [TBL] [Abstract][Full Text] [Related]
10. Ligand-Induced Chirality in ClMBA Coccia C; Morana M; Mahata A; Kaiser W; Moroni M; Albini B; Galinetto P; Folpini G; Milanese C; Porta A; Mosconi E; Petrozza A; De Angelis F; Malavasi L Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318557. PubMed ID: 38189576 [TBL] [Abstract][Full Text] [Related]
11. Optical signatures of molecular dissymmetry: combining theory with experiments to address stereochemical puzzles. Mukhopadhyay P; Wipf P; Beratan DN Acc Chem Res; 2009 Jun; 42(6):809-19. PubMed ID: 19378940 [TBL] [Abstract][Full Text] [Related]
12. Endowing Perovskite Nanocrystals with Circularly Polarized Luminescence. Shi Y; Duan P; Huo S; Li Y; Liu M Adv Mater; 2018 Mar; 30(12):e1705011. PubMed ID: 29363205 [TBL] [Abstract][Full Text] [Related]
13. Calculating the Circular Dichroism of Chiral Halide Perovskites: A Tight-Binding Approach. Apergi S; Brocks G; Tao S J Phys Chem Lett; 2023 Dec; 14(51):11565-11572. PubMed ID: 38096543 [TBL] [Abstract][Full Text] [Related]
14. Structurally Well-Defined Sigmoidal Gold Clusters: Probing the Correlation between Metal Atom Arrangement and Chiroptical Response. He X; Wang Y; Jiang H; Zhao L J Am Chem Soc; 2016 May; 138(17):5634-43. PubMed ID: 27070415 [TBL] [Abstract][Full Text] [Related]
16. Revealing the Intrinsic Chiroptical Activity in Chiral Metal-Halide Semiconductors. Zhang Z; Wang Z; Sung HH; Williams ID; Yu ZG; Lu H J Am Chem Soc; 2022 Dec; 144(48):22242-22250. PubMed ID: 36399117 [TBL] [Abstract][Full Text] [Related]
17. Optically Active CdSe-Dot/CdS-Rod Nanocrystals with Induced Chirality and Circularly Polarized Luminescence. Cheng J; Hao J; Liu H; Li J; Li J; Zhu X; Lin X; Wang K; He T ACS Nano; 2018 Jun; 12(6):5341-5350. PubMed ID: 29791135 [TBL] [Abstract][Full Text] [Related]
18. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality-Dependent Photocatalysis. Tan L; Yu SJ; Jin Y; Li J; Wang PP Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202112400. PubMed ID: 34936187 [TBL] [Abstract][Full Text] [Related]
19. Ligand-Induced Ground- and Excited-State Chirality in Silicon Nanoparticles: Surface Interactions Matter. Sujith M; Vishnu EK; Sappati S; Oliyantakath Hassan MS; Vijayan V; Thomas KG J Am Chem Soc; 2022 Mar; 144(11):5074-5086. PubMed ID: 35258297 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Circular Dichroism and Polarized Emission in an Achiral, Low Band Gap Bismuth Iodide Perovskite Derivative. Möbs J; Klement P; Stuhrmann G; Gümbel L; Müller MJ; Chatterjee S; Heine J J Am Chem Soc; 2023 Nov; 145(43):23478-23487. PubMed ID: 37797198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]