These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35024113)

  • 1. Computational and experimental investigation of the effect of cation structure on the solubility of anionic flow battery active-materials.
    Visayas BRB; Pahari SK; Gokoglan TC; Golen JA; Agar E; Cappillino PJ; Mayes ML
    Chem Sci; 2021 Dec; 12(48):15892-15907. PubMed ID: 35024113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing high energy density flow batteries by tuning active-material thermodynamics.
    Pahari SK; Gokoglan TC; Visayas BRB; Woehl J; Golen JA; Howland R; Mayes ML; Agar E; Cappillino PJ
    RSC Adv; 2021 Jan; 11(10):5432-5443. PubMed ID: 35423106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Alkylammonium Cations for Enhanced Solubility of Anionic Active Materials in Redox Flow Batteries: The Role of Bulk and Chain Length.
    Visayas BRB; Pahari SK; Poudel TM; Golen JA; Cappillino PJ; Mayes ML
    Chemphyschem; 2024 Dec; 25(24):e202400517. PubMed ID: 39384534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-capacity polysulfide-polyiodide nonaqueous redox flow batteries with a ceramic membrane.
    Chen M; Chen H
    Nanoscale Adv; 2023 Jan; 5(2):435-442. PubMed ID: 36756257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, Crystal Structure, and Conductivity of a Weakly Coordinating Anion/Cation Salt for Electrolyte Application in Next-Generation Batteries.
    Mandouma G; Collins J; Williams D
    Acc Chem Res; 2023 Jun; 56(11):1263-1270. PubMed ID: 36812469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte.
    Mitchell NH; Elgrishi N
    J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes.
    Chen X; Zhang Q
    Acc Chem Res; 2020 Sep; 53(9):1992-2002. PubMed ID: 32883067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes.
    McCormack PM; Koenig GM; Geise GM
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49331-49339. PubMed ID: 34609838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biredox Eutectic Electrolytes Derived from Organic Redox-Active Molecules: High-Energy Storage Systems.
    Zhang C; Qian Y; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Angew Chem Int Ed Engl; 2019 May; 58(21):7045-7050. PubMed ID: 30938026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid Nitrobenzene-Based Anolyte Materials for High-Current and -Energy-Density Nonaqueous Redox Flow Batteries.
    Xu D; Zhang C; Zhen Y; Li Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35579-35584. PubMed ID: 34297540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.
    Janoschka T; Martin N; Martin U; Friebe C; Morgenstern S; Hiller H; Hager MD; Schubert US
    Nature; 2015 Nov; 527(7576):78-81. PubMed ID: 26503039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The lightest organic radical cation for charge storage in redox flow batteries.
    Huang J; Pan B; Duan W; Wei X; Assary RS; Su L; Brushett FR; Cheng L; Liao C; Ferrandon MS; Wang W; Zhang Z; Burrell AK; Curtiss LA; Shkrob IA; Moore JS; Zhang L
    Sci Rep; 2016 Aug; 6():32102. PubMed ID: 27558638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits.
    Chen R
    Chem Asian J; 2023 Jan; 18(1):e202201024. PubMed ID: 36367282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Learning Guided Computational Discovery of Plant-Based Redoxmers for Organic Nonaqueous Redox Flow Batteries.
    Jain A; Shkrob IA; Doan HA; Adams K; Moore JS; Assary RS
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58309-58319. PubMed ID: 38071647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.