These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35024603)

  • 1. The effect of mAb and excipient cryoconcentration on long-term frozen storage stability - Part 1: Higher molecular weight species and subvisible particle formation.
    Bluemel O; Anuschek M; Buecheler JW; Hoelzl G; Bechtold-Peters K; Friess W
    Int J Pharm X; 2022 Dec; 4():100108. PubMed ID: 35024603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of mAb and excipient cryoconcentration on long-term frozen storage stability - part 2: Aggregate formation and oxidation.
    Bluemel O; Buecheler JW; Hauptmann A; Hoelzl G; Bechtold-Peters K; Friess W
    Int J Pharm X; 2022 Dec; 4():100109. PubMed ID: 35024604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cations and anions on glass transition temperatures in excipient solutions.
    Nesarikar VV; Nassar MN
    Pharm Dev Technol; 2007; 12(3):259-64. PubMed ID: 17613889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of Protein Content and Number of Aggregates in Monoclonal Antibody Formulation After Large-Scale Freezing.
    Hauptmann A; Hoelzl G; Loerting T
    AAPS PharmSciTech; 2019 Jan; 20(2):72. PubMed ID: 30631964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze concentration during freezing: How does the maximally freeze concentrated solution influence protein stability?
    Seifert I; Friess W
    Int J Pharm; 2020 Nov; 589():119810. PubMed ID: 32866649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method development and analysis of the water content of the maximally freeze concentrated solution suitable for protein lyophilisation.
    Seifert I; Bregolin A; Fissore D; Friess W
    Eur J Pharm Biopharm; 2020 Aug; 153():36-42. PubMed ID: 32526356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of glass transition temperatures in freeze concentrated solutions of non-electrolytes by electrical thermal analysis.
    Her LM; Jefferis RP; Gatlin LA; Braxton B; Nail SL
    Pharm Res; 1994 Jul; 11(7):1023-9. PubMed ID: 7937543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations.
    Haeuser C; Goldbach P; Huwyler J; Friess W; Allmendinger A
    Eur J Pharm Biopharm; 2020 Feb; 147():45-56. PubMed ID: 31866444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryoconcentration and 3D Temperature Profiles During Freezing of mAb Solutions in Large-Scale PET Bottles and a Novel Scale-Down Device.
    Bluemel O; Buecheler JW; Rodrigues MA; Geraldes V; Hoelzl G; Bechtold-Peters K; Friess W
    Pharm Res; 2020 Aug; 37(9):179. PubMed ID: 32864719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrolyte-induced changes in glass transition temperatures of freeze-concentrated solutes.
    Her LM; Deras M; Nail SL
    Pharm Res; 1995 May; 12(5):768-72. PubMed ID: 7479566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations into the stabilization of drugs by sugar glasses: III. The influence of various high-pH buffers.
    Eriksson JH; Hinrichs WL; de Jong GJ; Somsen GW; Frijlink HW
    Pharm Res; 2003 Sep; 20(9):1437-43. PubMed ID: 14567639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-concentration separates proteins and polymer excipients into different amorphous phases.
    Izutsu K; Kojima S
    Pharm Res; 2000 Oct; 17(10):1316-22. PubMed ID: 11145240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms.
    Chen B; Bautista R; Yu K; Zapata GA; Mulkerrin MG; Chamow SM
    Pharm Res; 2003 Dec; 20(12):1952-60. PubMed ID: 14725359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulations of sugars with amino acids or mannitol--influence of concentration ratio on the properties of the freeze-concentrate and the lyophilizate.
    Lueckel B; Bodmer D; Helk B; Leuenberger H
    Pharm Dev Technol; 1998 Aug; 3(3):325-36. PubMed ID: 9742553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamic simulations of temperature, cryoconcentration, and stress time during large-scale freezing and thawing of monoclonal antibody solutions.
    Bluemel O; Pavlišič A; Likozar B; Rodrigues MA; Geraldes V; Bechtold-Peters K; Friess W
    Eur J Pharm Biopharm; 2022 Aug; 177():107-112. PubMed ID: 35764219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorbitol crystallization can lead to protein aggregation in frozen protein formulations.
    Piedmonte DM; Summers C; McAuley A; Karamujic L; Ratnaswamy G
    Pharm Res; 2007 Jan; 24(1):136-46. PubMed ID: 17109212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of citric acid at the glass transition.
    Lu Q; Zografi G
    J Pharm Sci; 1997 Dec; 86(12):1374-8. PubMed ID: 9423149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of lyophilized sucrose formulations of an IgG1: subvisible particle formation.
    Davis JM; Zhang N; Payne RW; Murphy BM; Abdul-Fattah AM; Matsuura JE; Herman AC; Manning MC
    Pharm Dev Technol; 2013; 18(4):883-96. PubMed ID: 22813478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of 2-hydropropyl-beta-cyclodextrin in the stabilization of frozen formulations.
    Wong J; Kipp JE; Miller RL; Nair LM; Ray GJ
    Eur J Pharm Sci; 2014 Oct; 62():281-92. PubMed ID: 24932711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.