These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35024604)

  • 21. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway.
    Barnard JG; Singh S; Randolph TW; Carpenter JF
    J Pharm Sci; 2011 Feb; 100(2):492-503. PubMed ID: 20803602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Performance Size Exclusion Chromatography and High-Throughput Dynamic Light Scattering as Orthogonal Methods to Screen for Aggregation and Stability of Monoclonal Antibody Drug Products.
    Bhirde A; Chikkaveeraiah BV; Venna R; Carley R; Brorson K; Agarabi C
    J Pharm Sci; 2020 Nov; 109(11):3330-3339. PubMed ID: 32835703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved Stability of a Model IgG3 by DoE-Based Evaluation of Buffer Formulations.
    Chavez BK; Agarabi CD; Read EK; Boyne MT; Khan MA; Brorson KA
    Biomed Res Int; 2016; 2016():2074149. PubMed ID: 27042659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the freezing of biopharmaceuticals: first-principle modeling of the process and evaluation of its effect on product quality.
    Radmanovic N; Serno T; Joerg S; Germershaus O
    J Pharm Sci; 2013 Aug; 102(8):2495-507. PubMed ID: 23775776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing.
    Hauptmann A; Podgoršek K; Kuzman D; Srčič S; Hoelzl G; Loerting T
    Pharm Res; 2018 Mar; 35(5):101. PubMed ID: 29556730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Histidine and Sucrose on the Biophysical Properties of a Monoclonal Antibody.
    Baek Y; Singh N; Arunkumar A; Zydney AL
    Pharm Res; 2017 Mar; 34(3):629-639. PubMed ID: 28035628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An exploratory study on the effect of mechanical stress on particle formation in monoclonal antibody infusions.
    Abdel-Tawab M; Banerjee S; Kirchner R; Wellenhofer T; Hahn L; Meinel L; Holzgrabe U; Schubert-Zsilavecz M; Seidl A; Stadler F
    Arch Pharm (Weinheim); 2023 Aug; 356(8):e2300101. PubMed ID: 37224805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Grinding-Induced Subvisible Particles and Free Radicals in a Freeze-Dried Monoclonal Antibody Formulation.
    Jing ZY; Huo GL; Sun MF; Shen BB; Fang WJ
    Pharm Res; 2022 Feb; 39(2):399-410. PubMed ID: 35083639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of cations and anions on glass transition temperatures in excipient solutions.
    Nesarikar VV; Nassar MN
    Pharm Dev Technol; 2007; 12(3):259-64. PubMed ID: 17613889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass.
    Neergaard MS; Nielsen AD; Parshad H; Van De Weert M
    J Pharm Sci; 2014 Jan; 103(1):115-27. PubMed ID: 24282022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the physical stability of a lyophilized IgG1 mAb after accelerated shipping-like stress.
    Telikepalli S; Kumru OS; Kim JH; Joshi SB; O'Berry KB; Blake-Haskins AW; Perkins MD; Middaugh CR; Volkin DB
    J Pharm Sci; 2015 Feb; 104(2):495-507. PubMed ID: 25522000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated system for temperature-controlled fast protein liquid chromatography. III. Continuous downstream processing of monoclonal antibodies.
    Ketterer B; Moore-Kelly C; Thomas ORT; Franzreb M
    J Chromatogr A; 2020 Jan; 1609():460429. PubMed ID: 31431354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving Viscosity and Stability of a Highly Concentrated Monoclonal Antibody Solution with Concentrated Proline.
    Hung JJ; Dear BJ; Dinin AK; Borwankar AU; Mehta SK; Truskett TT; Johnston KP
    Pharm Res; 2018 Apr; 35(7):133. PubMed ID: 29713822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability of lyophilized sucrose formulations of an IgG1: subvisible particle formation.
    Davis JM; Zhang N; Payne RW; Murphy BM; Abdul-Fattah AM; Matsuura JE; Herman AC; Manning MC
    Pharm Dev Technol; 2013; 18(4):883-96. PubMed ID: 22813478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.
    Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ
    MAbs; 2015; 7(1):212-30. PubMed ID: 25559441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-throughput analysis of sub-visible mAb aggregate particles using automated fluorescence microscopy imaging.
    Paul AJ; Bickel F; Röhm M; Hospach L; Halder B; Rettich N; Handrick R; Herold EM; Kiefer H; Hesse F
    Anal Bioanal Chem; 2017 Jul; 409(17):4149-4156. PubMed ID: 28447132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.
    Gikanga B; Turok R; Hui A; Bowen M; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(1):59-73. PubMed ID: 25691715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glass transitions in frozen systems as influenced by molecular weight of food components.
    Zhao JH; Kumar PK; Sablani SS
    Compr Rev Food Sci Food Saf; 2022 Nov; 21(6):4683-4715. PubMed ID: 36156387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals.
    Bjelošević M; Seljak KB; Trstenjak U; Logar M; Brus B; Ahlin Grabnar P
    Eur J Pharm Sci; 2018 Sep; 122():292-302. PubMed ID: 30006178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.