These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35024702)

  • 1. Pinpointing photothermal contributions in photochemical reactions on plasmonic gold nanoparticles.
    Wang H; Cao Z; Zheng L; Wang X; Su M; Liu H
    Chem Commun (Camb); 2022 Feb; 58(11):1720-1723. PubMed ID: 35024702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating.
    Mahmoud MA
    Phys Chem Chem Phys; 2017 Dec; 19(47):32016-32023. PubMed ID: 29177303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic harvesting of light energy for Suzuki coupling reactions.
    Wang F; Li C; Chen H; Jiang R; Sun LD; Li Q; Wang J; Yu JC; Yan CH
    J Am Chem Soc; 2013 Apr; 135(15):5588-601. PubMed ID: 23521598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Plasmonic Photocatalysis Based on TiO
    Kumar A; Choudhary P; Kumar A; Camargo PHC; Krishnan V
    Small; 2022 Jan; 18(1):e2101638. PubMed ID: 34396695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Photocatalysis of Nitrous Oxide into N
    Swearer DF; Robatjazi H; Martirez JMP; Zhang M; Zhou L; Carter EA; Nordlander P; Halas NJ
    ACS Nano; 2019 Jul; 13(7):8076-8086. PubMed ID: 31244036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics.
    Baffou G; Bordacchini I; Baldi A; Quidant R
    Light Sci Appl; 2020; 9():108. PubMed ID: 32612818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Plasmonic Gold@Copper Sulfide Core-Shell Nanoparticles: Phase-Selective Synthesis and Multimodal Photothermal and Photocatalytic Behaviors.
    Sun M; Fu X; Chen K; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46146-46161. PubMed ID: 32955860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot plasmonic interactions: a new look at the photothermal efficacy of gold nanoparticles.
    Lukianova-Hleb EY; Anderson LJ; Lee S; Hafner JH; Lapotko DO
    Phys Chem Chem Phys; 2010 Oct; 12(38):12237-44. PubMed ID: 20714596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Theoretical Observation of Photothermal Chirality in Gold Nanoparticle Helicoids.
    Rafiei Miandashti A; Khosravi Khorashad L; Kordesch ME; Govorov AO; Richardson HH
    ACS Nano; 2020 Apr; 14(4):4188-4195. PubMed ID: 32176469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for
    Shan B; Wang H; Li L; Zhou G; Wen Y; Chen M; Li M
    Theranostics; 2020; 10(25):11656-11672. PubMed ID: 33052239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Nanohybrid with High Photothermal Conversion Efficiency for Simultaneously Effective Antibacterial/Anticancer Photothermal Therapy.
    Younis MR; An RB; Yin YC; Wang S; Ye D; Xia XH
    ACS Appl Bio Mater; 2019 Sep; 2(9):3942-3953. PubMed ID: 35021327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.
    Chang C; Yang C; Liu Y; Tao P; Song C; Shang W; Wu J; Deng T
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23412-8. PubMed ID: 27537862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding the kinetic limitations of plasmon catalysis: the case of 4-nitrothiophenol dimerization.
    Koopman W; Sarhan RM; Stete F; Schmitt CNZ; Bargheer M
    Nanoscale; 2020 Dec; 12(48):24411-24418. PubMed ID: 33300518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast and Long-Lived Transient Heating of Surface Adsorbates on Plasmonic Semiconductor Nanocrystals.
    Yang W; Liu Y; McBride JR; Lian T
    Nano Lett; 2021 Jan; 21(1):453-461. PubMed ID: 33263400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Heating-Promoted Photothermal Synthesis of α-Cyanoacrylonitriles Over Au/h-BN Catalysts.
    Liang C; Zhang Y; Zhang B; Liu XM; Gao GL; Cao J; Xu P
    Front Chem; 2021; 9():732162. PubMed ID: 34568280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Study on Effective Conditions for the Induction of Apoptotic Temperatures for Various Tumor Aspect Ratios Using a Single Continuous-Wave Laser in Photothermal Therapy Using Gold Nanorods.
    Kim M; Kim G; Kim D; Yoo J; Kim DK; Kim H
    Cancers (Basel); 2019 May; 11(6):. PubMed ID: 31159342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfite-triggered surface plasmon-catalyzed reduction of p-nitrothiophenol to p,p'-dimercaptoazobenzene.
    Xu G; Sun Y; Zhang Y; Xia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120282. PubMed ID: 34454131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol.
    Sarhan RM; Koopman W; Schuetz R; Schmid T; Liebig F; Koetz J; Bargheer M
    Sci Rep; 2019 Feb; 9(1):3060. PubMed ID: 30816134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.