These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 35025196)
41. Triboelectric-electromagnetic hybrid nanogenerator for harvesting blue energy and creating an ocean wave warning system. Wang W; Zhang Y; Wu G; Zhao Z; Wu Y; Zheng H Nanoscale Adv; 2024 Jul; 6(14):3566-3572. PubMed ID: 38989526 [TBL] [Abstract][Full Text] [Related]
42. Ultrahigh Output Piezoelectric and Triboelectric Hybrid Nanogenerators Based on ZnO Nanoflakes/Polydimethylsiloxane Composite Films. He W; Qian Y; Lee BS; Zhang F; Rasheed A; Jung JE; Kang DJ ACS Appl Mater Interfaces; 2018 Dec; 10(51):44415-44420. PubMed ID: 30507129 [TBL] [Abstract][Full Text] [Related]
43. Miniaturized and High Volumetric Energy Density Power Supply Device Based on a Broad-Frequency Vibration Driven Triboelectric Nanogenerator. Wu L; Ren Z; Wang Y; Tang Y; Wang ZL; Yang R Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793218 [TBL] [Abstract][Full Text] [Related]
44. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. Wang X; Wen Z; Guo H; Wu C; He X; Lin L; Cao X; Wang ZL ACS Nano; 2016 Dec; 10(12):11369-11376. PubMed ID: 28024336 [TBL] [Abstract][Full Text] [Related]
45. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Gu L; Liu J; Cui N; Xu Q; Du T; Zhang L; Wang Z; Long C; Qin Y Nat Commun; 2020 Feb; 11(1):1030. PubMed ID: 32098958 [TBL] [Abstract][Full Text] [Related]
46. Development of a Sustainable and Biodegradable Sarkar D; Das N; Saikh MM; Biswas P; Das S; Das S; Hoque NA; Basu R ACS Omega; 2021 Nov; 6(43):28710-28717. PubMed ID: 34746565 [TBL] [Abstract][Full Text] [Related]
47. Halide Tunablility Leads to Enhanced Biomechanical Energy Harvesting in Lead-Free Cs Paul T; Sahoo A; Maiti S; Gavali DS; Thapa R; Banerjee R ACS Appl Mater Interfaces; 2023 Jul; 15(29):34726-34741. PubMed ID: 37440167 [TBL] [Abstract][Full Text] [Related]
48. Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. Pan M; Yuan C; Liang X; Zou J; Zhang Y; Bowen C iScience; 2020 Nov; 23(11):101682. PubMed ID: 33163937 [TBL] [Abstract][Full Text] [Related]
49. An Eco-friendly Porous Nanocomposite Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Motion Sensing. Bai Z; Xu Y; Li J; Zhu J; Gao C; Zhang Y; Wang J; Guo J ACS Appl Mater Interfaces; 2020 Sep; 12(38):42880-42890. PubMed ID: 32847347 [TBL] [Abstract][Full Text] [Related]
50. Hand-Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices. Chung J; Yong H; Moon H; Duong QV; Choi ST; Kim D; Lee S Adv Sci (Weinh); 2018 Nov; 5(11):1801054. PubMed ID: 30479934 [TBL] [Abstract][Full Text] [Related]
51. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Zi Y; Lin L; Wang J; Wang S; Chen J; Fan X; Yang PK; Yi F; Wang ZL Adv Mater; 2015 Apr; 27(14):2340-7. PubMed ID: 25727070 [TBL] [Abstract][Full Text] [Related]
52. Environmental energy harvesting based on triboelectric nanogenerators. Tian J; Chen X; Wang ZL Nanotechnology; 2020 Mar; 31(24):242001. PubMed ID: 32092711 [TBL] [Abstract][Full Text] [Related]
53. Switchless Oscillating Charge Pump-Based Triboelectric Nanogenerator and an Additional Electromagnetic Generator for Harvesting Vertical Vibration Energy. Kim I; Kim D ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35849133 [TBL] [Abstract][Full Text] [Related]
54. Pendular-Translational Hybrid Nanogenerator Harvesting Water Wave Energy. Sun Y; Zheng F; Wei X; Shi Y; Li R; Wang B; Wang L; Wu Z; Wang ZL ACS Appl Mater Interfaces; 2022 Apr; 14(13):15187-15194. PubMed ID: 35344327 [TBL] [Abstract][Full Text] [Related]
55. A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric-Piezoelectric-Pyroelectric Effects. Wang S; Wang ZL; Yang Y Adv Mater; 2016 Apr; 28(15):2881-7. PubMed ID: 26891367 [TBL] [Abstract][Full Text] [Related]
56. Elastic Self-Recovering Hybrid Nanogenerator for Water Wave Energy Harvesting and Marine Environmental Monitoring. Wang Q; Yu G; Lou Y; Li M; Hu J; Li J; Cui W; Yu A; Zhai J Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931554 [TBL] [Abstract][Full Text] [Related]
57. Embroidery Triboelectric Nanogenerator for Energy Harvesting. Tahir HR; Malengier B; Sujan S; Van Langenhove L Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931567 [TBL] [Abstract][Full Text] [Related]
58. Triboelectric Nanogenerator versus Piezoelectric Generator at Low Frequency (<4 Hz): A Quantitative Comparison. Ahmed A; Hassan I; Helal AS; Sencadas V; Radhi A; Jeong CK; El-Kady MF iScience; 2020 Jul; 23(7):101286. PubMed ID: 32622264 [TBL] [Abstract][Full Text] [Related]
59. High output piezo/triboelectric hybrid generator. Jung WS; Kang MG; Moon HG; Baek SH; Yoon SJ; Wang ZL; Kim SW; Kang CY Sci Rep; 2015 Mar; 5():9309. PubMed ID: 25791299 [TBL] [Abstract][Full Text] [Related]
60. Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids. Liu T; Liu M; Dou S; Sun J; Cong Z; Jiang C; Du C; Pu X; Hu W; Wang ZL ACS Nano; 2018 Mar; 12(3):2818-2826. PubMed ID: 29494127 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]