BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35025271)

  • 1. Exploring the Hierarchical Structure and Alignment of Wood Cellulose Fibers for Bioinspired Anisotropic Polymeric Composites.
    Pereira Oliveira Moreira RL; Simão JA; Gouveia RF; Strauss M
    ACS Appl Bio Mater; 2020 Apr; 3(4):2193-2200. PubMed ID: 35025271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delignified Wood-Polymer Interpenetrating Composites Exceeding the Rule of Mixtures.
    Frey M; Schneider L; Masania K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35305-35311. PubMed ID: 31454224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Wood by Reversible Interlocking and Bioinspired Mechanical Gradients.
    Frey M; Biffi G; Adobes-Vidal M; Zirkelbach M; Wang Y; Tu K; Hirt AM; Masania K; Burgert I; Keplinger T
    Adv Sci (Weinh); 2019 May; 6(10):1802190. PubMed ID: 31131194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale mechanical and structural characterizations of Palmetto wood for bio-inspired hierarchically structured polymer composites.
    Gershon AL; Bruck HA; Xu S; Sutton MA; Tiwari V
    Mater Sci Eng C Mater Biol Appl; 2010 Jan; 30(2):235-244. PubMed ID: 30011613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering.
    Frey M; Widner D; Segmehl JS; Casdorff K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5030-5037. PubMed ID: 29373784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of Anisotropic Nanocellulose Films Stronger than the Original Tree.
    Merindol R; Diabang S; Mujica R; Le Houerou V; Roland T; Gauthier C; Decher G; Felix O
    ACS Nano; 2020 Dec; 14(12):16525-16534. PubMed ID: 32790330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges associated with cellulose composite material: Facet engineering and prospective.
    Aziz T; Haq F; Farid A; Kiran M; Faisal S; Ullah A; Ullah N; Bokhari A; Mubashir M; Chuah LF; Show PL
    Environ Res; 2023 Apr; 223():115429. PubMed ID: 36746207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity.
    Chen C; Song J; Cheng J; Pang Z; Gan W; Chen G; Kuang Y; Huang H; Ray U; Li T; Hu L
    ACS Nano; 2020 Dec; 14(12):16723-16734. PubMed ID: 32806053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Concise Review of the Components and Properties of Wood-Plastic Composites.
    Mitaľová Z; Mitaľ D; Berladir K
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of micro/nanocellulose reinforced PVDF/wood composites.
    Xu J; Xu X; Xu C; Jing Y; Shentu B
    Int J Biol Macromol; 2022 Nov; 220():766-774. PubMed ID: 35987360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Surfactants on the Preparation of Nanocellulose-PLA Composites.
    Immonen K; Lahtinen P; Pere J
    Bioengineering (Basel); 2017 Nov; 4(4):. PubMed ID: 29149057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic wood-hydrogel composites: Extending mechanical properties of wood towards soft materials' applications.
    Koch SM; Goldhahn C; Müller FJ; Yan W; Pilz-Allen C; Bidan CM; Ciabattoni B; Stricker L; Fratzl P; Keplinger T; Burgert I
    Mater Today Bio; 2023 Oct; 22():100772. PubMed ID: 37674781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Loaded Cellulose/Poly (butylene succinate) Sustainable Composites for Woody-Like Advanced Materials Application.
    Platnieks O; Gaidukovs S; Barkane A; Gaidukova G; Grase L; Thakur VK; Filipova I; Fridrihsone V; Skute M; Laka M
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31905645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic, Transparent Films with Aligned Cellulose Nanofibers.
    Zhu M; Wang Y; Zhu S; Xu L; Jia C; Dai J; Song J; Yao Y; Wang Y; Li Y; Henderson D; Luo W; Li H; Minus ML; Li T; Hu L
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Cellulose-Glass Fiber Composites for Automotive Applications.
    Annandarajah C; Langhorst A; Kiziltas A; Grewell D; Mielewski D; Montazami R
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569447
    [No Abstract]   [Full Text] [Related]  

  • 17. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures.
    Mredha MTI; Guo YZ; Nonoyama T; Nakajima T; Kurokawa T; Gong JP
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29341264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing and characterization of natural cellulose fibers/thermoset polymer composites.
    Thakur VK; Thakur MK
    Carbohydr Polym; 2014 Aug; 109():102-17. PubMed ID: 24815407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of lignin for the production of new compounded materials.
    Hüttermann A; Mai C; Kharazipour A
    Appl Microbiol Biotechnol; 2001 May; 55(4):387-94. PubMed ID: 11398916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.