BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35025320)

  • 1. Engineering a Porous Hydrogel-Based Device for Cell Transplantation.
    Naficy S; Dehghani F; Chew YV; Hawthorne WJ; Le TYL
    ACS Appl Bio Mater; 2020 Apr; 3(4):1986-1994. PubMed ID: 35025320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes.
    An D; Chiu A; Flanders JA; Song W; Shou D; Lu YC; Grunnet LG; Winkel L; Ingvorsen C; Christophersen NS; Fels JJ; Sand FW; Ji Y; Qi L; Pardo Y; Luo D; Silberstein M; Fan J; Ma M
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):E263-E272. PubMed ID: 29279393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mold-casted non-degradable, islet macro-encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice.
    Rios PD; Zhang X; Luo X; Shea LD
    Biotechnol Bioeng; 2016 Nov; 113(11):2485-95. PubMed ID: 27159557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation.
    Su J; Hu BH; Lowe WL; Kaufman DB; Messersmith PB
    Biomaterials; 2010 Jan; 31(2):308-14. PubMed ID: 19782393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation.
    Weaver JD; Headen DM; Hunckler MD; Coronel MM; Stabler CL; García AJ
    Biomaterials; 2018 Jul; 172():54-65. PubMed ID: 29715595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies.
    An D; Ji Y; Chiu A; Lu YC; Song W; Zhai L; Qi L; Luo D; Ma M
    Biomaterials; 2015 Jan; 37():40-8. PubMed ID: 25453936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tough porous nanocomposite hydrogel for water treatment.
    Wu Z; Zhang P; Zhang H; Li X; He Y; Qin P; Yang C
    J Hazard Mater; 2022 Jan; 421():126754. PubMed ID: 34388914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of nanofibrous mat surrounded hydrogel scaffold as an encapsulation device for encapsulating pancreas β cells.
    Seyyedi MS; Monfared M; Mirzaei E; Azarpira N
    Sci Rep; 2022 Dec; 12(1):21910. PubMed ID: 36535972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes.
    Wang X; Maxwell KG; Wang K; Bowers DT; Flanders JA; Liu W; Wang LH; Liu Q; Liu C; Naji A; Wang Y; Wang B; Chen J; Ernst AU; Melero-Martin JM; Millman JR; Ma M
    Sci Transl Med; 2021 Jun; 13(596):. PubMed ID: 34078744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable Polyethylene Glycol Hydrogel for Islet Encapsulation: an
    Knobeloch T; Abadi SEM; Bruns J; Zustiak SP; Kwon G
    Biomed Phys Eng Express; 2017; 3():. PubMed ID: 29527325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of an oxygen-generating scaffold on the viability and insulin secretion function of porcine neonatal pancreatic cell clusters.
    Lee EM; Jung JI; Alam Z; Yi HG; Kim H; Choi JW; Hurh S; Kim YJ; Jeong JC; Yang J; Oh KH; Kim HC; Lee BC; Choi I; Cho DW; Ahn C
    Xenotransplantation; 2018 Mar; 25(2):e12378. PubMed ID: 29322561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
    Hwang CM; Sant S; Masaeli M; Kachouie NN; Zamanian B; Lee SH; Khademhosseini A
    Biofabrication; 2010 Sep; 2(3):035003. PubMed ID: 20823504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous toroidal spiral particles for islet encapsulation.
    Leon Plata P; Zaroudi M; Lee CY; Foster C; Nitsche LC; Rios PD; Wang Y; Oberholzer J; Liu Y
    Biomater Sci; 2021 Jun; 9(11):3954-3967. PubMed ID: 33620354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Safe, Fibrosis-Mitigating, and Scalable Encapsulation Device Supports Long-Term Function of Insulin-Producing Cells.
    Liu W; Flanders JA; Wang LH; Liu Q; Bowers DT; Wang K; Chiu A; Wang X; Ernst AU; Shariati K; Caserto JS; Parker B; Gao D; Plesser MD; Grunnet LG; Rescan C; Pimentel Carletto R; Winkel L; Melero-Martin JM; Ma M
    Small; 2022 Feb; 18(8):e2104899. PubMed ID: 34897997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tough bonding of hydrogels to diverse non-porous surfaces.
    Yuk H; Zhang T; Lin S; Parada GA; Zhao X
    Nat Mater; 2016 Feb; 15(2):190-6. PubMed ID: 26552058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.
    Wei S; Qu G; Luo G; Huang Y; Zhang H; Zhou X; Wang L; Liu Z; Kong T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11204-11212. PubMed ID: 29504395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Facile Strategy for the Fabrication of Cell-laden Porous Alginate Hydrogels Based on Two-phase Aqueous Emulsions.
    Xue W; Lee D; Kong Y; Kuss M; Huang Y; Kim T; Chung S; Dudley AT; Ro SH; Duan B
    Adv Funct Mater; 2023 Aug; 33(35):. PubMed ID: 38131003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.
    Wang Z; Zhang H; Chu AJ; Jackson J; Lin K; Lim CJ; Lange D; Chiao M
    Acta Biomater; 2018 Apr; 70():98-109. PubMed ID: 29447960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-polyvinyl pyrrolidone hydrogels as candidate for islet immunoisolation: in vitro biocompatibility evaluation.
    Risbud M; Hardikar A; Bhonde R
    Cell Transplant; 2000; 9(1):25-31. PubMed ID: 10784063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Overview of Engineered Hydrogel-Based Biomaterials for Improved
    Ghasemi A; Akbari E; Imani R
    Front Bioeng Biotechnol; 2021; 9():662084. PubMed ID: 34513805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.