These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35025422)

  • 1. Dual-Diffusivity Stochastic Model for Macromolecule Release from a Hydrogel.
    Jahanmir G; Lau CML; Abdekhodaie MJ; Chau Y
    ACS Appl Bio Mater; 2020 Jul; 3(7):4208-4219. PubMed ID: 35025422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic Lattice-Based Modeling of Macromolecule Release from Degradable Hydrogel.
    Jahanmir G; Lau CML; Yu Y; Chau Y
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4402-4412. PubMed ID: 36057096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectively Cross-Linked Tetra-PEG Hydrogels Provide Control over Mechanical Strength with Minimal Impact on Diffusivity.
    Lust ST; Hoogland D; Norman MDA; Kerins C; Omar J; Jowett GM; Yu TTL; Yan Z; Xu JZ; Marciano D; da Silva RMP; Dreiss CA; Lamata P; Shipley RJ; Gentleman E
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4293-4304. PubMed ID: 34151570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Drug Release From Degradable Hydrogels Using Fluorescence Correlation Spectroscopy and Mathematical Modeling.
    Sheth S; Barnard E; Hyatt B; Rathinam M; Zustiak SP
    Front Bioeng Biotechnol; 2019; 7():410. PubMed ID: 31956651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle Diffusivity and Free-Energy Profiles in Hydrogels from Time-Resolved Penetration Data.
    Wolde-Kidan A; Herrmann A; Prause A; Gradzielski M; Haag R; Block S; Netz RR
    Biophys J; 2021 Feb; 120(3):463-475. PubMed ID: 33421414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput FRAP Analysis of Solute Diffusion in Hydrogels.
    Richbourg NR; Peppas NA
    Macromolecules; 2021 Nov; 54(22):10477-10486. PubMed ID: 35601759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of different tissue-simulating hydrogel compartments on in vitro release and distribution from drug-eluting stents.
    Semmling B; Nagel S; Sternberg K; Weitschies W; Seidlitz A
    Eur J Pharm Biopharm; 2014 Aug; 87(3):570-8. PubMed ID: 24801065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesh size analysis of cellulose nanofibril hydrogels using solute exclusion and PFG-NMR spectroscopy.
    Jowkarderis L; van de Ven TG
    Soft Matter; 2015 Dec; 11(47):9201-10. PubMed ID: 26417984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular diffusion and release from self-assembled beta-hairpin peptide hydrogels.
    Branco MC; Pochan DJ; Wagner NJ; Schneider JP
    Biomaterials; 2009 Mar; 30(7):1339-47. PubMed ID: 19100615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogels in controlled release formulations: network design and mathematical modeling.
    Lin CC; Metters AT
    Adv Drug Deliv Rev; 2006 Nov; 58(12-13):1379-408. PubMed ID: 17081649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical structure.
    Ferrero C; Massuelle D; Jeannerat D; Doelker E
    J Control Release; 2008 May; 128(1):71-9. PubMed ID: 18433910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swelling behaviour and controlled drug release from cross-linked κ-carrageenan/NaCMC hydrogel by diffusion mechanism.
    Hezaveh H; Muhamad II; Noshadi I; Shu Fen L; Ngadi N
    J Microencapsul; 2012; 29(4):368-79. PubMed ID: 22309480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization and developability assessment of sustained release hydrogels for rapid implementation during preclinical studies.
    Agarwal P; Greene DG; Sherman S; Wendl K; Vega L; Park H; Shimanovich R; Reid DL
    Eur J Pharm Sci; 2021 Mar; 158():105689. PubMed ID: 33359482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling and finite element simulation of slow release of drugs using hydrogels as carriers with various drug concentration distributions.
    Xu Y; Jia Y; Wang Z; Wang Z
    J Pharm Sci; 2013 May; 102(5):1532-43. PubMed ID: 23526640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multiscale Model for Solute Diffusion in Hydrogels.
    Axpe E; Chan D; Offeddu GS; Chang Y; Merida D; Hernandez HL; Appel EA
    Macromolecules; 2019 Sep; 52(18):6889-6897. PubMed ID: 31579160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug loading into and drug release from pH- and temperature-responsive cylindrical hydrogels.
    Ninawe PR; Parulekar SJ
    Biotechnol Prog; 2011; 27(5):1442-54. PubMed ID: 21626721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new mathematical approach to predict the actual drug release from hydrogels.
    Zeinali Kalkhoran AH; Vahidi O; Naghib SM
    Eur J Pharm Sci; 2018 Jan; 111():303-310. PubMed ID: 28962856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of small-molecule release from crosslinked hydrogel microspheres: effect of crosslinking and enzymatic degradation of hydrogel matrix.
    Cheng F; Choy YB; Choi H; Kim KK
    Int J Pharm; 2011 Jan; 403(1-2):90-5. PubMed ID: 20971173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solute diffusion and interactions in cross-linked poly(ethylene glycol) hydrogels studied by Fluorescence Correlation Spectroscopy.
    Zustiak SP; Boukari H; Leach JB
    Soft Matter; 2010 Aug; 6(15):. PubMed ID: 24282439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.