BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35025427)

  • 21. Green chemistry approach for the synthesis of biocompatible graphene.
    Gurunathan S; Han JW; Kim JH
    Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A General Route to Robust Nacre-Like Graphene Oxide Films.
    Tan Z; Zhang M; Li C; Yu S; Shi G
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15010-6. PubMed ID: 26111943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria.
    Yoshida N; Miyata Y; Doi K; Goto Y; Nagao Y; Tero R; Hiraishi A
    Sci Rep; 2016 Feb; 6():21867. PubMed ID: 26899353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Swelling properties of graphite oxides and graphene oxide multilayered materials.
    Iakunkov A; Talyzin AV
    Nanoscale; 2020 Nov; 12(41):21060-21093. PubMed ID: 33084722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile fabrication of Shewanella@graphene core-shell material and its enhanced performance in nitrobenzene reduction.
    Pan T; Chen B
    Sci Total Environ; 2019 Mar; 658():324-332. PubMed ID: 30579190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering of salt-tolerant Shewanella aquimarina XMS-1 for enhanced pollutants transformation and electricity generation.
    Zhang ZB; Cheng ZH; Wu JH; Yue ZB; Wang J; Liu DF
    Sci Total Environ; 2022 Feb; 807(Pt 3):151009. PubMed ID: 34662622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From Solution to Biointerface: Graphene Self-Assemblies of Varying Lateral Sizes and Surface Properties for Biofilm Control and Osteodifferentiation.
    Jia Z; Shi Y; Xiong P; Zhou W; Cheng Y; Zheng Y; Xi T; Wei S
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17151-65. PubMed ID: 27327408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of graphene oxide via bacterial respiration.
    Salas EC; Sun Z; Lüttge A; Tour JM
    ACS Nano; 2010 Aug; 4(8):4852-6. PubMed ID: 20731460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A systems toxicology approach to the surface functionality control of graphene-cell interactions.
    Chatterjee N; Eom HJ; Choi J
    Biomaterials; 2014 Jan; 35(4):1109-27. PubMed ID: 24211078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergism of Water Shock and a Biocompatible Block Copolymer Potentiates the Antibacterial Activity of Graphene Oxide.
    Karahan HE; Wei L; Goh K; Wiraja C; Liu Z; Xu C; Jiang R; Wei J; Chen Y
    Small; 2016 Feb; 12(7):951-62. PubMed ID: 26707949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels.
    Adhikari B; Biswas A; Banerjee A
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5472-82. PubMed ID: 22970805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced extracellular electron transfer between Shewanella putrefaciens and carbon felt electrode modified by bio-reduced graphene oxide.
    Zhu W; Yao M; Gao H; Wen H; Zhao X; Zhang J; Bai H
    Sci Total Environ; 2019 Nov; 691():1089-1097. PubMed ID: 31466191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications.
    Ligorio C; Zhou M; Wychowaniec JK; Zhu X; Bartlam C; Miller AF; Vijayaraghavan A; Hoyland JA; Saiani A
    Acta Biomater; 2019 Jul; 92():92-103. PubMed ID: 31091473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications.
    Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK
    Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals.
    Ma J; Liu R; Wang X; Liu Q; Chen Y; Valle RP; Zuo YY; Xia T; Liu S
    ACS Nano; 2015 Oct; 9(10):10498-515. PubMed ID: 26389709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of Graphene Oxide-Based Supramolecular Hybrid Nanohydrogel Through Host-Guest Interaction and Its Application in Drug Delivery.
    Zhang Q; Deng H; Li H; Song K; Zeng C; Rong L
    J Biomed Nanotechnol; 2018 Dec; 14(12):2056-2065. PubMed ID: 30305213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quinone-mediated microbial synthesis of reduced graphene oxide with peroxidase-like activity.
    Liu G; Zhang X; Zhou J; Wang A; Wang J; Jin R; Lv H
    Bioresour Technol; 2013 Dec; 149():503-8. PubMed ID: 24140856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shear-thinning and self-healing nanohybrid alginate-graphene oxide hydrogel based on guest-host assembly.
    Soltani S; Emadi R; Javanmard SH; Kharaziha M; Rahmati A
    Int J Biol Macromol; 2021 Jun; 180():311-323. PubMed ID: 33737186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels.
    Shen H; Lin H; Sun AX; Song S; Wang B; Yang Y; Dai J; Tuan RS
    Acta Biomater; 2020 Mar; 105():44-55. PubMed ID: 32035282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Realizing Ultralow Concentration Gelation of Graphene Oxide with Artificial Interfaces.
    Luo C; Lv W; Qi C; Zhong L; Pan ZZ; Li J; Kang F; Yang QH
    Adv Mater; 2019 Feb; 31(8):e1805075. PubMed ID: 30592336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.