BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35025451)

  • 1. Photonic Thin Films Assembled from Amphiphilic Cellulose Nanofibrils Displaying Iridescent Full-Colors.
    Xu X; Zhou H; Zhou G; Hsieh YL
    ACS Appl Bio Mater; 2020 Jul; 3(7):4522-4530. PubMed ID: 35025451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral Cellulose Nanocrystal Humidity-Responsive Iridescent Films with Glucan for Tuned Iridescence and Reinforced Mechanics.
    Meng Y; Long Z; He Z; Fu X; Dong C
    Biomacromolecules; 2021 Nov; 22(11):4479-4488. PubMed ID: 34605629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators.
    Xu X; Hsieh YL
    Nanoscale; 2019 Jun; 11(24):11719-11729. PubMed ID: 31180404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic Optical Cellulose Nanocrystal Films with Controllable Iridescent Color and Environmental Stimuli-Responsive Chromism.
    He YD; Zhang ZL; Xue J; Wang XH; Song F; Wang XL; Zhu LL; Wang YZ
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5805-5811. PubMed ID: 29361212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically Strong and Electrically Conductive Polyethylene Oxide/Few-Layer Graphene/Cellulose Nanofibrils Nanocomposite Films.
    Li M; Xiao M; Wang Q; Zhang J; Xue X; Zhao J; Zhang W; Lu C
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal annealing of iridescent cellulose nanocrystal films.
    D'Acierno F; Ohashi R; Hamad WY; Michal CA; MacLachlan MJ
    Carbohydr Polym; 2021 Nov; 272():118468. PubMed ID: 34420727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-assembling Polysaccharide Nanocrystals and Nanofibers for Robust Chiral Iridescent Films.
    Xiong R; Singh A; Yu S; Zhang S; Lee H; Yingling YG; Nepal D; Bunning TJ; Tsukruk VV
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35345-35353. PubMed ID: 32640788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on "Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide" and Thin-Film Interference from Dried Graphene Oxide Film.
    Hong SH; Song JK
    Small; 2017 Apr; 13(15):. PubMed ID: 28406581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films.
    Gençer A; Schütz C; Thielemans W
    Langmuir; 2017 Jan; 33(1):228-234. PubMed ID: 28034313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique.
    Chen Q; Liu P; Nan F; Zhou L; Zhang J
    Biomacromolecules; 2014 Nov; 15(11):4343-50. PubMed ID: 25300554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital color in cellulose nanocrystal films.
    Dumanli AG; van der Kooij HM; Kamita G; Reisner E; Baumberg JJ; Steiner U; Vignolini S
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12302-6. PubMed ID: 25007291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Oxide/Reduced Graphene Oxide Enhanced Noniridescent Structural Colors Based on Silica Photonic Spray Paints with Improved Mechanical Robustness.
    Yu J; Lee CH; Kan CW
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33917887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural color in
    Thayer RC; Allen FI; Patel NH
    Elife; 2020 Apr; 9():. PubMed ID: 32254023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iridescent Cellulose Nanocrystal Films Modified with Hydroxypropyl Cellulose.
    Walters CM; Boott CE; Nguyen TD; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2020 Mar; 21(3):1295-1302. PubMed ID: 32053370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Tunable Photoluminescent Composite of Cellulose Nanofibrils and CdS Quantum Dots.
    Wang Q; Tang A; Liu Y; Fang Z; Fu S
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile surface modification of amphiphilic cellulose nanofibrils prepared by aqueous counter collision.
    Yokota S; Tagawa S; Kondo T
    Carbohydr Polym; 2021 Mar; 255():117342. PubMed ID: 33436185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized surface acetylation of aqueous counter collision cellulose nanofibrils using a Pickering emulsion as an interfacial reaction platform.
    Ishida K; Yokota S; Kondo T
    Carbohydr Polym; 2021 Jun; 261():117845. PubMed ID: 33766341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of cellulose structural-color pigments with tunable colors and iridescence/non-iridescence.
    Dong X; Wang ZL; Song F; Wang XL; Wang YZ
    Carbohydr Polym; 2023 Aug; 313():120877. PubMed ID: 37182967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Healable Organogel Nanocomposite with Angle-Independent Structural Colors.
    Zhou J; Han P; Liu M; Zhou H; Zhang Y; Jiang J; Liu P; Wei Y; Song Y; Yao X
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10462-10466. PubMed ID: 28677259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals.
    Duan C; Cheng Z; Wang B; Zeng J; Xu J; Li J; Gao W; Chen K
    Small; 2021 Jul; 17(30):e2007306. PubMed ID: 34047461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.