These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35026277)

  • 21. [Seasonal variation and driving factors of forest fire in Zhejiang Province, China, based on MODIS satellite hot spots].
    Zeng AC; Cai QJ; Su ZW; Guo XB; Jin QF; Guo FT
    Ying Yong Sheng Tai Xue Bao; 2020 Feb; 31(2):399-406. PubMed ID: 32476331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal and spatial patterns of fire activity in three biomes of Brazil.
    Abreu MC; Lyra GB; de Oliveira-Júnior JF; Souza A; Pobočíková I; de Souza Fraga M; Abreu RCR
    Sci Total Environ; 2022 Oct; 844():157138. PubMed ID: 35798117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data.
    Ramo R; Roteta E; Bistinas I; van Wees D; Bastarrika A; Chuvieco E; van der Werf GR
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fire history derived from Pinus resinosa Ait. for the Islands of Eastern Lac La Croix, Minnesota, USA.
    Johnson LB; Kipfmueller KF
    Ecol Appl; 2016 Jun; 26(4):1030-46. PubMed ID: 27509746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of short-term weather conditions in temporal dynamics of fire regime features in mainland Spain.
    Jiménez-Ruano A; Rodrigues Mimbrero M; Jolly WM; de la Riva Fernández J
    J Environ Manage; 2019 Jul; 241():575-586. PubMed ID: 30301658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing and reinitializing wildland fire simulations through satellite active fire data.
    Cardil A; Monedero S; Ramírez J; Silva CA
    J Environ Manage; 2019 Feb; 231():996-1003. PubMed ID: 30602261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wetland Fire Scar Monitoring and Its Response to Changes of the Pantanal Wetland.
    Li X; Song K; Liu G
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climatic and anthropogenic drivers of northern Amazon fires during the 2015-2016 El Niño event.
    Fonseca MG; Anderson LO; Arai E; Shimabukuro YE; Xaud HAM; Xaud MR; Madani N; Wagner FH; Aragão LEOC
    Ecol Appl; 2017 Dec; 27(8):2514-2527. PubMed ID: 28922585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploratory analysis of lightning-ignited wildfires in the Warren Region, Western Australia.
    Bates BC; McCaw L; Dowdy AJ
    J Environ Manage; 2018 Nov; 225():336-345. PubMed ID: 30099148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating Lightning-Caused Fire Occurrence Using Spatial Generalized Additive Models: A Case Study in Central Spain.
    Rodríguez-Pérez JR; Ordóñez C; Roca-Pardiñas J; Vecín-Arias D; Castedo-Dorado F
    Risk Anal; 2020 Jul; 40(7):1418-1437. PubMed ID: 32347573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing aridity causes larger and more severe forest fires across Europe.
    Grünig M; Seidl R; Senf C
    Glob Chang Biol; 2023 Mar; 29(6):1648-1659. PubMed ID: 36517954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictive model of spatial scale of forest fire driving factors: a case study of Yunnan Province, China.
    Li W; Xu Q; Yi J; Liu J
    Sci Rep; 2022 Nov; 12(1):19029. PubMed ID: 36348041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Managing fires in a changing world: Fuel and weather determine fire behavior and safety in the neotropical savannas.
    Santos ACD; Montenegro SDR; Ferreira MC; Barradas ACS; Schmidt IB
    J Environ Manage; 2021 Jul; 289():112508. PubMed ID: 33831763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions.
    Costafreda-Aumedes S; Vega-Garcia C; Comas C
    J Environ Manage; 2018 Jul; 217():90-99. PubMed ID: 29597111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia.
    Mundo IA; Wiegand T; Kanagaraj R; Kitzberger T
    J Environ Manage; 2013 Jul; 123():77-87. PubMed ID: 23583868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of fire resilience in subtropical wetlands using high spatial resolution images.
    Simioni JPD; Guasselli LA; Belloli TF; Ramos RA
    Environ Monit Assess; 2022 May; 194(6):417. PubMed ID: 35536333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forest fire probability under ENSO conditions in a semi-arid region: a case study in Guanajuato.
    Farfán M; Dominguez C; Espinoza A; Jaramillo A; Alcántara C; Maldonado V; Tovar I; Flamenco A
    Environ Monit Assess; 2021 Oct; 193(10):684. PubMed ID: 34599681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review of the main driving factors of forest fire ignition over Europe.
    Ganteaume A; Camia A; Jappiot M; San-Miguel-Ayanz J; Long-Fournel M; Lampin C
    Environ Manage; 2013 Mar; 51(3):651-62. PubMed ID: 23086400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. We're building it up to burn it down: fire occurrence and fire-related climatic patterns in Brazilian biomes.
    Diele Viegas LM; Sales L; Hipólito J; Amorim C; Johnson de Pereira E; Ferreira P; Folta C; Ferrante L; Fearnside P; Mendes Malhado AC; Frederico Duarte Rocha C; M Vale M
    PeerJ; 2022; 10():e14276. PubMed ID: 36312759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.