BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35026703)

  • 1. Assessing the DNA structural integrity via selective annihilation of Watson-Crick hydrogen bonds: Insights from molecular dynamics simulations.
    Pant P; Aggarwal L
    Biophys Chem; 2022 Mar; 282():106758. PubMed ID: 35026703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural properties of hybrid triplex of polycation deoxyribonucleic S-methylthiourea (DNmt) strands with a complementary DNA strand, probed by nanosecond molecular dynamics.
    Luo J; Bruice TC
    J Biomol Struct Dyn; 2000 Feb; 17(4):629-43. PubMed ID: 10698101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward an Expanded Genome: Structural and Computational Characterization of an Artificially Expanded Genetic Information System.
    Richards NGJ; Georgiadis MM
    Acc Chem Res; 2017 Jun; 50(6):1375-1382. PubMed ID: 28594167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics and dynamics of the non-natural fluorescent 4AP:DAP base pair.
    Chawla M; Autiero I; Oliva R; Cavallo L
    Phys Chem Chem Phys; 2018 Jan; 20(5):3699-3709. PubMed ID: 29345270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can modified DNA base pairs with chalcogen bonding expand the genetic alphabet? A combined quantum chemical and molecular dynamics simulation study.
    Sharma KD; Kathuria P; Wetmore SD; Sharma P
    Phys Chem Chem Phys; 2020 Nov; 22(41):23754-23765. PubMed ID: 33063082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
    Takahashi S; Sugimoto N
    Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K; Spacková N; Stefl R; Sponer J; Leontis NB
    J Mol Biol; 2001 Nov; 313(5):1073-91. PubMed ID: 11700064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.
    Takezawa Y; Shionoya M
    Acc Chem Res; 2012 Dec; 45(12):2066-76. PubMed ID: 22452649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(9):1474-99. PubMed ID: 23909623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Under what conditions does G.C Watson-Crick DNA base pair acquire all four configurations characteristic for A.T Watson-Crick DNA base pair?].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):98-103. PubMed ID: 24319979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing conformational transitions towards mutagenic Watson-Crick-like G·T mismatches using off-resonance sugar carbon R
    Rangadurai A; Szymanski ES; Kimsey I; Shi H; Al-Hashimi HM
    J Biomol NMR; 2020 Sep; 74(8-9):457-471. PubMed ID: 32789613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Hoogsteen dynamics on DNA recognition.
    Xu Y; McSally J; Andricioaei I; Al-Hashimi HM
    Nat Commun; 2018 Apr; 9(1):1473. PubMed ID: 29662229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient Hoogsteen base pairs in canonical duplex DNA.
    Nikolova EN; Kim E; Wise AA; O'Brien PJ; Andricioaei I; Al-Hashimi HM
    Nature; 2011 Feb; 470(7335):498-502. PubMed ID: 21270796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consecutive non-natural PZ nucleobase pairs in DNA impact helical structure as seen in 50 μs molecular dynamics simulations.
    Molt RW; Georgiadis MM; Richards NGJ
    Nucleic Acids Res; 2017 Apr; 45(7):3643-3653. PubMed ID: 28334863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bonding in duplex DNA probed by DNP enhanced solid-state NMR N-H bond length measurements.
    Bhai L; Thomas JK; Conroy DW; Xu Y; Al-Hashimi HM; Jaroniec CP
    Front Mol Biosci; 2023; 10():1286172. PubMed ID: 38111464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Base Pair Mismatches Induce Structural Changes and Alter the Free-Energy Landscape of Base Flip.
    Kingsland A; Maibaum L
    J Phys Chem B; 2018 Dec; 122(51):12251-12259. PubMed ID: 30495958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urea Mimics Nucleobases by Preserving the Helical Integrity of B-DNA Duplexes via Hydrogen Bonding and Stacking Interactions.
    Suresh G; Padhi S; Patil I; Priyakumar UD
    Biochemistry; 2016 Oct; 55(40):5653-5664. PubMed ID: 27657980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Watson-Crick base pairing controls excited-state decay in natural DNA.
    Bucher DB; Schlueter A; Carell T; Zinth W
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11366-9. PubMed ID: 25196546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.