BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35026739)

  • 1. Thermodynamics, static properties and transport behaviour of fluids with competing interactions.
    Perdomo-Pérez R; Martínez-Rivera J; Palmero-Cruz NC; Sandoval-Puentes MA; Gallegos JAS; Lázaro-Lázaro E; Valadez-Pérez NE; Torres-Carbajal A; Castañeda-Priego R
    J Phys Condens Matter; 2022 Feb; 34(14):. PubMed ID: 35026739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clusters in colloidal dispersions with a short-range depletion attraction: Thermodynamic identification and morphology.
    Soto-Bustamante F; Valadez-Pérez NE; Liu Y; Castañeda-Priego R; Laurati M
    J Colloid Interface Sci; 2022 Jul; 618():442-450. PubMed ID: 35364545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cluster formation in fluids with competing short-range and long-range interactions.
    Sweatman MB; Fartaria R; Lue L
    J Chem Phys; 2014 Mar; 140(12):124508. PubMed ID: 24697460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: thermodynamic signatures of cluster formation in fluids with competing interactions.
    Bomont JM; Bretonnet JL; Costa D; Hansen JP
    J Chem Phys; 2012 Jul; 137(1):011101. PubMed ID: 22779629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the importance of thermodynamic self-consistency for calculating clusterlike pair correlations in hard-core double Yukawa fluids.
    Kim JM; Castañeda-Priego R; Liu Y; Wagner NJ
    J Chem Phys; 2011 Feb; 134(6):064904. PubMed ID: 21322731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation.
    Das S; Riest J; Winkler RG; Gompper G; Dhont JKG; Nägele G
    Soft Matter; 2017 Dec; 14(1):92-103. PubMed ID: 29199754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and detection of microstructural clustering in fluids with spatial-range competitive interactions.
    Jadrich RB; Bollinger JA; Johnston KP; Truskett TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042312. PubMed ID: 25974496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semianalytical "reverse" approach to link structure and microscopic interactions in two-Yukawa competing fluids.
    Bretonnet JL; Bomont JM; Costa D
    J Chem Phys; 2018 Dec; 149(23):234907. PubMed ID: 30579317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion.
    Sciortino F; Mossa S; Zaccarelli E; Tartaglia P
    Phys Rev Lett; 2004 Jul; 93(5):055701. PubMed ID: 15323710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized phase behavior of cluster formation in colloidal dispersions with competing interactions.
    Godfrin PD; Valadez-Pérez NE; Castañeda-Priego R; Wagner NJ; Liu Y
    Soft Matter; 2014 Jul; 10(28):5061-71. PubMed ID: 24899107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology modification in mixed shape colloidal dispersions. Part I: pure components.
    Ten Brinke AJW; Bailey L; Lekkerkerker HNW; Maitland GC
    Soft Matter; 2007 Aug; 3(9):1145-1162. PubMed ID: 32900036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competing interactions in the depletion forces of ternary colloidal mixtures.
    de Los Santos-López NM; Pérez-Ángel G; Méndez-Alcaraz JM; Castañeda-Priego R
    J Chem Phys; 2021 Jul; 155(2):024901. PubMed ID: 34266249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and thermodynamics of colloidal protein cluster formation: comparison of square-well and simple dipolar models.
    Young TM; Roberts CJ
    J Chem Phys; 2009 Sep; 131(12):125104. PubMed ID: 19791922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonuniversal routes to universality: critical phenomena in colloidal dispersions.
    Pini D; Lo Verso F; Tau M; Parola A; Reatto L
    Phys Rev Lett; 2008 Feb; 100(5):055703. PubMed ID: 18352391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional colloidal aggregation mediated by the range of repulsive interactions.
    Fernández-Toledano JC; Moncho-Jordá A; Martínez-López F; González AE; Hidalgo-Alvarez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041408. PubMed ID: 17500895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and phase behavior of colloidal dumbbells with tunable attractive interactions.
    Munaò G; Costa D; Giacometti A; Caccamo C; Sciortino F
    Phys Chem Chem Phys; 2013 Dec; 15(47):20590-9. PubMed ID: 24185816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern formation and self-assembly driven by competing interactions.
    Pini D; Parola A
    Soft Matter; 2017 Dec; 13(48):9259-9272. PubMed ID: 29199736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Péclet number affects microstructure and transient cluster aggregation in sedimenting colloidal suspensions.
    Moncho-Jordá A; Louis AA; Padding JT
    J Chem Phys; 2012 Feb; 136(6):064517. PubMed ID: 22360205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.